Возможности использования рилменидина для фармакотерапевтической коррекции эндотелиальной дисфункции у женщин с артериальной гипертензией, сахарным диабетом 2 типа и висцеральным ожирением

Е.В. Елисеева, О.В. Гайдарова, О.В. Борушнова, Л.А. Шапкина, А.М. Морозова

ГОУ ВПО «Владивостокский государственный медицинский университет Росздрава». Владивосток, Россия

Rilmenidine therapy potential in pharmaceutical correction of endothelial dysfunction among women with arterial hypertension, Type 2 diabetes mellitus, and visceral obesity

E.V. Eliseeva, O.V. Gaydarova, O.V. Borushnova, L.A. Shapkina, A.M. Morozova

Vladivostok State Medical University, State Federal Agency for Health and Social Development. Vladivostok, Russia

Цель. Оценить эффективность селективного агониста I_1 -имидазолиновых рецепторов рилменидина у женщин с артериальной гипертоний (АГ) I степени (ст.), сахарным диабетом 2 типа (СД-2) и висцеральным ожирением (ВО) с учетом антигипертензивного действия и динамики биохимических маркеров эндотелиальной дисфункции (ЭД).

Материал и методы. Обследованы и пролечены 27 женщин, страдающих СД-2, АГ I ст. и ВО, не получавших предшествующей регулярной антигипертензивной терапии. Средний возраст пациенток $52,0\pm5,50$ лет, средняя длительность СД-2 $-3,23\pm1,0$ лет, АГ $-5,93\pm2,28$ лет, ВО $-13,53\pm3,75$ лет. Методы исследования: антропометрия, суточное мониторирование артериального давления (АД), определение в крови эндотелина (ЭТ-1), стабильных метаболитов NO (NOn), глюкозы крови натощак и постпрандиально, процентное содержание гликированного гемоглобина.

Результаты. Прием рилменидина в дозе 1 мг/сут. сопровождался достижением целевого уровня АД у 77,8% больных, снижением среднесуточного, дневного и ночного систолического АД (САД) на 10,6%, 12,1% и 7% соответственно (p<0,001); регрессом «показателей нагрузки». На фоне терапии рилменидином наблюдалось достоверное повышение суточного индекса САД на 3,29 мм рт.ст. (p<0,001); увеличение числа лиц с нормальным суточным ритмом («dipper») с 49,3% до 74,2%; достоверное снижение ЧСС с 85, 24 \pm 4,78 уд/мин до 72,32 \pm 4,24 уд/мин. (p<0,05). Лечение рилменидином и аторвастатином сопровождалось уменьшением показателей общего холестерина на 27% (p<0,05), липопротеидов низкой плотности на 36% (p<0,01) и триглицеридов — на 24% (p<0,05). Снижению АД и благоприятным изменениям в липидном спектре сопутствовали уменьшение активности ЭТ-1 на 50% (p<0,05), увеличение концентрации NOn на 9,7% (p<0,05). За период наблюдения не отмечено отрицательного влияния рилменидина на состояние углеводного обмена.

Заключение. Полученные результаты могут быть использованы для дополнительного обоснования использования рилменидина с целью коррекции АГ у пациенток с СД-2 и ВО.

Ключевые слова: сахарный диабет 2 типа, артериальная гипертензия, висцеральное ожирение, эндотелиальная дисфункция, рилменидин.

Aim. To assess the effectiveness of a selective I_1 imidazoline receptor agonist, rilmenidine, in women with Stage I arterial hypertension (AH), Type 2 diabetes mellitus (DM-2), and visceral obesity (VO), taking into account anti-hypertensive effects and dynamics of endothelial dysfunction (ED) biochemical markers.

Material and methods. In total, 27 women with DM-2, Stage I AH, and VO, not receiving any regular antihypertensive treatment before, were examined. Mean participants' age was 52,0±5,5 years, mean duration of DM-2,

©Коллектив авторов, 2007 e-mail: yeliseeff@rbcmail.ru

AH, and VO - 3,23±1,0, 5,93±2,28, and 13,53±3,75 years, respectively. Anthropometry, 24-hour blood pressure monitoring (BPM), measurement of endotheline-1 (ET-1), stable NO metabolites (NOn), fasting and postprandial glucose, as well as glycated hemoglobin (%) levels were performed.

Results. Rilmenidine therapy (1 mg/d) was associated with target BP level achievement in 77,8% of the patients, decrease in mean 24-hour, daytime and nighttime systolic BP (SBP) by 10,6%, 12,1% and 7%, respectively (p<0,001), and regression of "load" parameters. Circadian SBP index significantly increased (by 3,29 mm Hg; p<0,001), the percentage of patients with normal circadian rhythm («dippers») increased from 49,3% to 74,2%. Heart rate was significantly reduced, from $85,24\pm4,78$ to $72,32\pm4,24$ bpm (p<0,05). Rilmenidine and atorvastatin therapy was associated with reduction in the levels of total cholesterol (by 27%; p<0,05), low-density lipoprotein cholesterol (by 36%; p<0,01), and triglycerides (by 24%; p<0,05). BP decrease and lipid profile improvement were accompanied by decreased ET-1 activity (by 50%; p<0,05) and increased NOn concentration (by 9,7%; p<0,05). No negative effects on carbohydrate metabolism were registered during the follow-up period.

Conclusion. The results obtained could be used as an additional argument supporting rilmenidine therapy for AH management in women with DM-2 and VO.

Key words: Type 2 diabetes mellitus, arterial hypertension, visceral obesity, endothelial dysfunction, rilmenidine.

Неуклонный рост числа пациентов, страдающих артериальной гипертензией (АГ), обуславливает необходимость дальнейшего изучения патогенетических механизмов повышения артериального давления (АД) и поиска эффективных способов их медикаментозной коррекции. Особое значение эта проблема приобретает в группах с высоким риском сердечно-сосудистых осложнений, к которым относятся лица с АГ, сахарным диабетом 2 типа (СД-2) и висцеральным ожирением (ВО). Каждое из перечисленных состояний входит в число независимых факторов риска фатальных и нефатальных кардиоваскулярных катастроф [1,2].

Согласно современным представлениям, повышение АД, нарушение углеводного обмена и ВО патогенетически взаимосвязаны и являются следствием инсулинорезистентности (ИР) и компенсаторной гиперинсулинемии (ГИ) [3-6]. Известно несколько механизмов формирования АГ при ГИ: активация симпатической нервной системы (СНС); повышение реабсорбции натрия и воды в проксимальных канальцах почек, что способствует развитию гиперволемии; повышение содержания внутриклеточного натрия и кальция, что сопровождается увеличением чувствительности сосудистой стенки к прессорным факторам; активация митоген-активированной протеинкиназы, стимулирующей факторы роста, в результате чего увеличивается пролиферация гладкомышечных (ГМК) и эндотелиальных клеток стенок сосудов, утолщается сосудистая стенка, и увеличивается общее периферическое сопротивление [3-6].

В настоящее время активно изучается один из дополнительных механизмов патогенетической взаимосвязи между АГ, СД-2 и ВО — эндотелиальная дисфункция (ЭД). У данной категории лиц отмечается снижение реакции на вазодилатационное и усиление на вазоконстрикторное воздействие, что связано с уменьшением синтеза и увеличением распада оксида азота (NO) [3,7-11]. NO, снижая концентрации в цитоплазме ионов каль-

ция, вызывает расслабление гладких мышц сосудов, что приводит к вазодилатации [8], тормозит агрегацию и адгезию тромбоцитов [5,8,12-14]. NO предупреждает структурные изменения, блокируя пролиферацию ГМК, замедляет образование неочитимы и гипертрофию сосудистой стенки [8,12,13,15]. Под действием ГИ происходит стимуляция выработки вазоконстрикторов, самым мощным из которых является эндотелин-1 (ЭТ-1) [4,5,8,10]; по силе сосудосуживающего эффекта он в 30 раз превосходит ангиотензин II [16]. У пациентов с СД наблюдается превышение нормальной концентрации ЭТ-1 почти в 3 раза [16].

В условиях длительной гипергликемии происходит неферментативное гликозилирование структурных белков в субэндотелиальном пространстве, активация свободнорадикальных процессов с увеличением продукции супероксиданионов, вызывающих деградацию NO [4,8,13,17-19].

На фоне ИР изменяются физико-химические свойства, состав и функциональная активность липопротеидных (ЛП) частиц. В липопротеидах низкой плотности (ЛНП) повышается содержание белка и уменьшается количество эфиров холестерина (ХС). Это приводит к образованию более мелких и плотных ЛНП, обладающих высокой степенью атерогенности [13,20-22].

Гипергликемия существенно влияет на биологическую активность ЛП. Гликозилирование ЛНП нарушает их взаимодействия с аполипопротеиновыми (апо)-В-, Е-рецепторами клетки и замедляет катаболизм. В результате формируется гиперлипопротеидемия и гиперхолестеринемия. Гликозилирование липопротеидов высокой плотности (ЛВП) напротив ускоряет их катаболизм с развитием гипо-α-липопротеидемии [5,13,20,21].

Гликозилирование приводит к образованию супероксидных и гидроксильных радикалов, стимулирующих окисление ЛНП. Перекисно-модифицированные ЛНП обладают атерогенным и прямым цитотоксическим действием. Вызывая повреждение эндотелия, они: стимулируют адгезию моноцитов на его поверхности; взаимодействуют с факторами свертывания, активизируя экспрессию тромбопластина и ингибитора активации плазминогена; угнетают продукцию вазодилататоров и усиливают синтез вазоконстрикторов. Поглощаясь фибробластами и макрофагами в субэндотелиальном пространстве, они приобретают свойства «пенистых клеток». Макрофаги выделяют провоспалительные и биологически активные соединения, включая хемотоксины, митогены и факторы роста, которые стимулируют миграцию из медии в интиму ГМК и фибробластов, их пролиферацию, репликацию и синтез соединительной ткани [8,17,18,21,23].

При АГ нарастает механическое давление на стенки сосудов. Вследствие этого нарушается архитектоника эндотелиальных клеток, повышается их проницаемость для альбумина, происходит сосудистое ремоделирование, возрастает продукция внеклеточного матрикса, пролиферация и миграция ГМК. Происходит стимуляция синтеза сосудосуживающего ЭТ-1 [18,24,25].

Результатом этих процессов является дефицит NO и как следствие нарушение инициируемых им реакций, т.е. формируется эндотелиальная дисфункция (ЭД).

В качестве биохимических маркеров эндотелий-зависимых механизмов регуляции сосудистого тонуса в настоящее время принято рассматривать ЭТ-1 и стабильные метаболиты NO (NOn) [5,25,26].

В связи с вышеизложенным, при выборе антигипертензивного препарата у больных АГ, СД-2 с ВО необходимо учитывать выраженность антигипертензивного эффекта, влияние на состояние углеводного обмена и возможность фармакокоррекции эндотелий-зависимых путей регуляции сосудистого тонуса. Принимая во внимание наличие симпатикотонии у данной категории пациентов, представляется обоснованным использование агонистов I_1 -имидазолиновых рецепторов, блокирующих центральные механизмы активации СНС.

Целью настоящего исследования являлась фармакотерапевтическая оценка эффективности селективного агониста I_1 -имидазолиновых рецепторов рилменидина у женщин больных АГ I степени (ст.), СД-2 с ВО с учетом выраженности антигипертензивного воздействия и динамики биохимических маркеров ЭД.

Материал и методы

Проведены обследование и лечение 27 женщин, страдающих СД-2, АГ I ст. согласно BO3/МОАГ, 1999 и BO, не получавших предшествующей регулярной антигипертензивной терапии. Средний возраст пациенток составил $52,0\pm5,50$ лет, средняя длительность СД-2 — $3,23\pm1,0$ лет, АГ — $5,93\pm2,28$ лет, BO — $13,53\pm3,75$ лет. Критериями диагностики АГ служили величина АД по данным повторных измерений $\geq 140/90$ мм рт.ст. и отсут-

ствие клинических, лабораторных и инструментальных признаков симптоматических $A\Gamma$.

Критериями исключения из исследования являлись: кризовое течение АГ, АД > 160/100 мм рт.ст., ишемическая болезнь сердца (ИБС), сердечно-сосудистая и дыхательная недостаточность, нарушение атриовентрикулярной проводимости, острое нарушение мозгового кровообращения и острый инфаркт миокарда, перенесенные в течение последних 6 месяцев, диабетическая нефропатия IV-V ст., почечная и печеночная недостаточность, анемия различного генеза. Из исследования также были исключены пациентки, имеющие возможные причины симптоматического повышения АД и злоупотребляющие алкоголем.

Все больные получали комбинированную сахароснижающую терапию, в состав которой обязательно входили препараты из группы бигуанидов в дозе 1,5-2 г/сут. С гиполипидемической целью назначался аторвастатин (20 мг/сут.). Коррекция лечения не проводилась в течение всего периода наблюдения. Средний уровень гликированного гемоглобина (HbA1c) составил $7.87\pm1.45\%$, общего XC (OXC) — 5.79 ± 0.60 ммоль/л, триглицеридов (ТГ) — 2.13 ± 0.20 ммоль/л.

Все включенные в исследование женщины имели избыточную массу тела (МТ). Средний показатель индекса МТ (ИМТ) $-34,5\pm3,50$ кг/м², средняя окружность талии (ОТ) $-101,5\pm9,50$ см.

Антигипертензивный эффект лечения оценивали результатам суточного мониторирования АД (СМАД), которое выполняли исходно и через 6 месяцев терапии с помощью неинвазивной портативной системы Cardio Tens 01 "Meditech" (Венгрия). Монитор устанавливали между 9 и 10 ч, регистрацию АД производили с интервалом 15 мин. днем и 30 мин. во время сна. Периоды бодрствования и сна определяли индивидуально. Мониторирование длилось 24-26 часов. Оценивали следующие показатели: усредненные значения систолического АД (САД) и диастолического АД (ДАД) за 3 временных периода: 24 ч — САД $_{24}$, ДАД $_{24}$, день — САДд, ДАДд и ночь - САДн, ДАДн; «нагрузка давлением» по индексу времени (ИВ) как процент величин АД выше пороговых значений: >140/90 мм рт.ст. для дня и >120/80 мм рт.ст. для ночи; вариабельность АД (ВАР) как стандартное отклонение от средней величины (день, ночь); о выраженности суточного ритма (СР) АД судили по степени ночного снижения (СНС) САД (%), рассчитанной по разнице между средними величинами САД за день и ночь, отнесенной к средним дневным величинам САД. На нормальный СР указывали значения СНС САД = 10-20%. При СНС САД <10% пациентов классифицировали как «non-dippers» (имеющие недостаточное снижение ночного САД), при СНС САД <0% – как «night-peakers» (устойчивое повышение АД в ночные часы) [27]. Критерием эффективности антигипертензивной терапии по данным СМАД являлось снижение среднесуточного ДАД ≥ 5 мм рт.ст. от исходного, а в качестве целевого принимали уровни 130/80 мм рт.ст. для дневных и 125/75 мм рт.ст. для ночных часов [27].

Концентрацию глюкозы крови натощак и постпрандиально исследовали глюкозооксидазным методом; процентное содержание HbA1c определяли с использованием жидкостной высокоэффективной хроматографии.

Уровень ЭТ-1 в плазме крови определяли методом иммуноферментного анализа с использованием набора

Таблица 1 Динамика показателей СМАД у пациенток с АГ I ст., ВО и стажем СД-2 до 5 лет на фоне лечения рилменидином ($M\pm m$)

Показатель	Значение АД		p
	Исходно	После лечения	
САД24, мм рт.ст.	141,01±2,68	126,13±1,81	<0,001
САДд, мм рт.ст.	143,76±2,18	126,34±2,08	<0,001
САДн, мм рт.ст.	135,35±2,34	125,84±2,16	<0,001
ДАД24, мм рт.ст.	$79,89\pm3,05$	71,32±2,1	< 0,02
ДАДд, мм рт.ст.	$83,26\pm2,78$	75,47±2,47	< 0,02
ДАДн, мм рт.ст.	74,13±2,62	69,42±2,54	>0,05
ИВ САД24, %	68,14±5,13	$39,14\pm3,82$	<0,001
ИП САД24, мм рт.ст. • ч	292,44±27,05	189,32±22,54	<0,001
ИВ САДд, %	59,35±4,37	$36,48\pm3,65$	<0,001
ИП САДд, мм рт.ст. • ч	217,76±25,02	166,56±24,21	<0,001
ИВ САДн, %	$80,23\pm4,85$	43,37±4,57	<0,001
ИП САДн, мм рт.ст. • ч	$369,95\pm28,01$	212,38±26,74	<0,001
ИВ ДАД24, %	31,20±6,69	$27,9\pm4,95$	>0,05
ИП ДАД24, мм рт.ст. • ч	80,17±7,13	58,48±5,2	< 0,02
ИВ ДАДд, %	31,36±6,93	26,87±5,32	>0,05
ИП ДАДд, мм рт.ст. • ч	87,70±7,59	56,39±6,53	<0,001
ИВ ДАДн, %	$30,86\pm4,28$	$28,47\pm3,48$	>0,05
ИП ДАДн, мм рт.ст. • ч	71,16±6,49	60,56±5,96	>0,05
ВАР САДд, мм рт.ст.	$17,58\pm1,98$	12,15±1,62	< 0,05
ВАР ДАДд, мм рт.ст.	$10,34\pm1,69$	9,23±1,55	>0,05
ВАР САДн, мм рт.ст.	$16,54\pm1,82$	$12,02\pm1,68$	< 0,05
ВАР ДАДн, мм рт.ст.	$10,69\pm1,72$	$9,54\pm1,67$	>0,05
СИ САД,%	$8,45\pm0,42$	$11,74\pm0,28$	< 0,01
СИ ДАД, %	$14,42\pm0,84$	$15,02\pm0,73$	>0,05

Примечание: ИП – индекс площади; р – достоверность различий по сравнению с исходными данными.

реактива Endothelin (1-21) производства фирмы "Biomedica Gruppe" (Австрия). Оценка содержания метаболитов NO в сыворотке крови проводилась колориметрическим методом с помощью реактива Грейса.

Исследование являлось открытым, последовательным с титрованием дозы. После проведения предусмотренного протоколом обследования всем пациенткам назначался рилменидин (Альбарел, ЭГИС ОАО, Венгрия). Стартовая доза составляла 1 мг/сут. однократно, при недостаточном антигипертензивном эффекте дозу препарата увеличивали до 2 мг/сут.

Для статистического анализа результатов исследования использовали пакет прикладных программ Statistica 6.0 фирмы StatSoft Inc. (США). Обработку полученных данных проводили методом вариационной статистики с вычислением средней арифметической величины и среднеквадратического отклонения. Оценку значимости различий двух независимых и зависимых совокупностей выполняли с помощью критерия Стьюдента. Различия считали достоверными при р<0,05.

Результаты и обсуждение

Исследование завершили все 27 больных АГ I ст., СД-2 с ВО. На фоне 6-месячной терапии рилменидином нежелательных побочных эффектов, связанных с назначением препарата, не зарегистрировано.

Динамика показателей СМ на фоне 6-месячной терапии представлена в таблице 1 и свидетельствует о высокой эффективности рилменидина. Прием

препарата в дозе 1 мг/сут. сопровождался достижением целевого уровня АД у 77,8% больных.

На фоне приема рилменидина установлено достоверное снижение САД $_{24}$, САД $_{34}$, САД $_{44}$ на 10,6%, 12,1% и 7% соответственно (р<0,001). Данные изменения сопровождались достоверным регрессом «показателей нагрузки», о чем, в частности, свидетельствует динамика среднесуточного ИВ САД, который уменьшился на 42,6% по сравнению с исходным значением (р<0,001).

В ходе исследования у пациенток с АГ I ст., СД-2 и ВО ВАР САДд снизилась на 5,43 мм рт.ст., а САДн — на 4,52 мм рт.ст. (p<0,05).

Терапия сопровождалась достоверным снижением частоты сердечных сокращений (ЧСС) с $85,24\pm4,78$ уд/мин. до $72,32\pm4,24$ уд/мин. (p<0,05).

Полученные результаты свидетельствуют, что проводимое лечение сопровождалось достоверным повышением суточного индекса (СИ) САД на 3,29 мм рт.ст. (р<0,01). У пациенток с исходно нормальным значением СИ САД на фоне терапии рилменидином отмечено сохранение достаточного уровня АД в ночное время. Указанные изменения сопровождались ростом числа лиц с нормальным суточным ритмом («dipper») с 49,3% до 74,2%.

Многофакторная терапия рилменидином и аторвастатином дала хороший гиполипидемический эффект. Показатели ОХС снизились на 27% с

 $5,79\pm0,60$ ммоль/л до $4,23\pm0,38$ ммоль/л (p<0,05); ЛНП на 36% — с $3,05\pm0,27$ ммоль/л до $1,95\pm0,32$ ммоль/л (p<0,01); ТГ на 24% — с $2,13\pm0,20$ ммоль/л до $1,59\pm0,18$ ммоль/л (p<0,05), что сопровождалось достоверным регрессом коэффициента атерогенности на 33,7% (p<0,05).

Учитывая отсутствие установленных четких биохимических норм и диагностических критериев нарушения функции эндотелия, содержание ЭТ-1 и NOn исследовали в сравнительном аспекте. Контрольную группу (КГ) составили 15 женщин соответствующего возраста, у которых при повторных измерениях АД по методу Короткова показатели АД не превышали 140/90 мм рт.ст., а при клинико-лабораторных и инструментальных методах обследования не было выявлено признаков нарушения углеводного обмена и наличия других компонентов метаболического синдрома. Отсутствие приема какихлибо лекарственных средств являлось необходимым условием включения в данную группу.

При исследовании нитроксидпродуцирующей функции эндотелия установлено достоверное снижение уровня NOn в сыворотке крови пациенток с СД-2, BO и АГ I ст. $-19,02\pm0,53$ мкмоль/л по сравнению с КГ $-23,57\pm0,12$ мкмоль/л (p<0,01). Дефицит NOn у больных АГ I ст., СД-2 с BO сочетался с достоверно более высоким содержанием ЭТ-1 $-2,13\pm0,44$ фмоль/л по сравнению с аналогичным показателем у женщин КГ $-0,89\pm0,32$ фмоль/л (p<0,01).

Снижение АД и благоприятные изменения в липидном спектре на фоне применения рилменидина сопровождались уменьшением активности ЭТ-1 на 50% (p<0,05), а концентрация NOn увеличилась на 9.7% (p<0,05) (рисунок 1).

За период наблюдения не отмечено отрицательного влияния рилменидина на состояние углеводного обмена.

Таким образом, терапия рилменидином у женщин, больных АГ I ст., СД-2 с BO сопровождается

Литература

- Stengard JN, Tuomslebto J, Pekkanen J, et al. Diabetes mellitus impaired glucose tolerance and mortality among eldery men: the Finnish Cohorts of seven countries study. Diabetologia 1992; 35: 760-5.
- Stamler I, Vaccaro O, Neanon ID. Diabetes other risk factors and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434-44.
- Адашева Т.В., Демичева О.Ю. Метаболический синдром основы патогенетической терапии. Леч врач 2003; 10: 24-8.
- 4. Задионченко В.С., Адашева Т.В., Демичева О.Ю. и др. Артериальная гипертония при метаболическом синдроме: патогенез, основы терапии. Cons med 2004; 6(9): 663-8.
- Дедов И.И., Шестакова М.В. Артериальная гипертония и сахарный диабет. Москва ООО «Мед информ агентство» 2006; 344 с.
- Метаболический синдром: пособие для терапевтов и кардиологов [под ред. Е.И. Соколова]. Москва РКИ Соверо пресс 2005; 48 с.

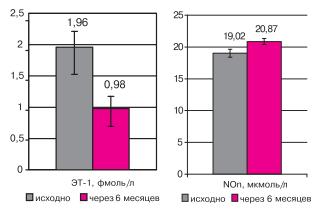


Рис. 1 Динамика активности ЭТ-1 и NOn на фоне терапии рилменидином.

достоверным снижением АД. Хороший антигипертензивный эффект дополняется положительным влиянием на функциональное состояние эндотелия, о чем свидетельствует динамика биохимических маркеров ЭД.

Выводы

Терапия рилменидином в течение 6 месяцев сопровождалась эффективной коррекцией суточного профиля АД у женщин с АГ I ст., СД-2 и ВО: снижение среднесуточного, ночного и дневного САД, уменьшение «показателей нагрузки» САД, ЧСС. На фоне лечения препаратом наблюдается рост СИ САД, что привело к увеличению числа больных с восстановленной двухфазностью СР АД.

Препарат не обладает отрицательным воздействием на параметры углеводного обмена.

Терапия рилменидином сопровождается положительным воздействием на состояние эндотелийзависимых механизмов регуляции сосудистого тонуса, о чем свидетельствует динамика биохимических маркеров ЭД (NO и ЭТ-1); это служит дополнительным основанием для использования препарата с целью коррекции АГ у лиц с СД-2 и ВО.

- Бутрова С.А. Метаболический синдром: патогенез, клиника, диагностика, подходы к лечению. РМЖ 2001; 2: 50-6.
- Демидова Т.Ю., Аметов А.С., Смагина Л.В. Моксонидин в коррекции метаболических нарушений и эндотелиальной дисфункции у больных сахарным диабетом типа 2, ассоциированным с артериальной гипертензией. Артер гиперт 2004; 10(2): 104-9.
- Диденко В.А. Метаболический синдром: история вопроса и этиопатогенез. Лабор мед 1999; 2: 49-56.
- Маколкин В.И. Возможно ли применение β-адреноблокаторов при артериальной гипертонии у больных метаболическим синдромом и сахарным диабетом 2 типа? РМЖ 2005; 13(11): 732-5.
- Ярек Мартынова И.Р., Шестакова М.В. Сахарный диабет и эндотелиальная дисфункция. Сахарный диабет 2004; 2: 48-52.
- Белоусов Ю.Б., Намсараев Ж.Н. Эндотелиальная дисфункция как причина атеросклеротического поражения артерий

- при артериальной гипертензии: методы коррекции. Фарматека 2004; 6: 41-9.
- Демидова Т.Ю., Аметов А.С. Рациональная терапия кардиальной патологии у больных сахарным диабетом 2 типа: пособие для врачей. Москва 2005; 32 с.
- 14. Vane IR, Anggard EE, Botting R.M. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27-36.
- Шестакова М.В., Северина А.С. Эндотелиальная дисфункция, система ангиогенеза и система гемостаза. Москва 2005; 26 с.
- Шестакова М.В., Дедов И.И. Диабетическая нефропатия: механизмы развития, клиника, диагностика, лечение: пособие для врачей. Москва 2003; 73 с.
- Александров А.А. Сахарный диабет болезнь «взрывающихся» бляшек. Cons med 2001; 3(10): 464-8.
- Шестакова М.В. Дисфункция эндотелия причина или следствие метаболического синдрома? РМЖ 2001; 9(2): 88-90.
- Britten M, Schuchinger V. The role of endothelial function for is chemic manifestations of coronary atherosclerosis. Herz 1998; 23(2): 97-105.
- 20. Аметов А.С., Демидова Т.Ю., Смагина Л.В. Перспективы влияния гипотензивной терапии на патогенетические ме-

- ханизмы синдрома инсулинорезистентности. Пробл эндокрин 2005; 51(1): 35-40.
- Балаболкин М.И. Артериальная гипертензия у больных сахарным диабетом. Генетические аспекты и особенности терапии: пособие для врачей. Москва 2003; 68 с.
- Родбард Х.Е. Нарушения липидного обмена при сахарном диабете: современные концепции и лечение. Сах диабет 2004; 2: 20-2.
- Сорокин Е.В., Карпов Ю.А. Статины, эндотелий и сердечно-сосудистый риск. РМЖ 2001; 9(9): 352-4.
- Соболева Г.Н., Рогоза А.Н., Шумилина М.В. и др. Дисфункция эндотелия при артериальной гипертонии: вазопротективные эффекты β-блокаторов нового поколения. РМЖ 2001; 9(18): 754-7.
- Небиеридзе Д.В. Клиническое значение дисфункции эндотелия при артериальной гипертонии. Cons med 2005 (приложение №1): 3-6.
- Небиеридзе Д.В. Дисфункция эндотелия и ее коррекция при артериальной гипертонии. РМЖ 2006; 14(2): 127-32.
- Кобалава Ж.Д., Котовская Ю.В. Мониторирование артериального давления: методические аспекты и клиническое значение. Москва 1999; 234 с.

Поступила 07/11-2007