Особенности циркадного ритма артериального давления у больных артериальной гипертензией с синдромом обструктивного апноэ во сне, в зависимости от увеличения массы тела

Иванов А. П. 1* , Эльгардт И. А. 1 , Ростороцкая В. В. 2

¹Тверской клинический кардиологический диспансер. Тверь, Россия; ²Медицинский центр при Спецстрое РФ. Москва, Россия

Цель. Оценить особенности показателей суточного мониторирования АД (СМАД) у больных артериальной гипертензией (АГ) в сочетании с синдромом обструктивного апноэ во сне (ОАС) и их зависимость от индекса массы тела (ИМТ).

Материал и методы. С помощью СМАД и сочетанного мониторирования ЭКГ, дыхания обследованы 120 больных АГ в зависимости от ИМТ > или $< 25 \text{ кг/m}^2$.

Результаты. У пациентов с сопутствующим ОАС имелось повышение средних уровней систолического и диастолического АД (САД, ДАД) как в дневные, так и в ночные часы, а так же индексов нагрузки давлением (ИВ) для САД и ДАД в 1,5 раза. При учете увеличенного ИМТ дальнейших изменения показателей СМАД не наблюдали, однако у них имелся измененный суточный профиль АД с уменьше-

нием разницы среднесуточных значений, более выраженных для ДАД (в 2,4 раза) с одновременным увеличением частоты регистрации варианта over-dipper с 13,3 % до 42,1 %.

Заключение. Наличие АГ с повышением ИМТ и ОАС существенно изменяет показатели СМАД. При этом увеличение ИМТ связано с нарушением суточного профиля АД и повышением как среднесуточного, так и ночного уровня ДАД.

Ключевые слова: апноэ во сне, суточное мониторирование артериального давления, ожирение, артериальная гипертензия.

Поступила 02/08-2010

Кардиоваскулярная терапия и профилактика, 2012; 11(2): 24-28

Circadian blood pressure rhythm and increased body weight in patients with arterial hypertension and obstructive sleep apnoea syndrome

Ivanov A. P.1*, Elgardt I. A.1, Rostorotskaya V. V.2

¹Tver Clinical Cardiology Dispanser. Tver, Russia; ²Medical Centre, Russian Federation Agency of Special Building. Moscow, Russia

Aim. To assess the specifics of 24-hour blood pressure monitoring (BPM) parameters and their association with body mass index (BMI) in patients with arterial hypertension (AH) and obstructive sleep apnoea (OSA) syndrome.

Material and methods. The study included 120 AH patients with BMI under or over 25 kg/m², who underwent 24-hour BMP and combined monitoring of electrocardiogram (ECG) and breathing.

Results. AH patients with OSA syndrome demonstrated increased mean daytime and nighttime levels of systolic and diastolic BP (SBP, DBP) and a 1,5-fold increase in SBP and DBP pressure load indices. Patients with increased BMI had disturbed circadian BP profile, with reduced mean

24-hour difference, more pronounced for DBP (2,4-fold difference), and an increase in the "over-dipper" prevalence (from 13,3 % to 42,1 %).

Conclusion. The combination of AH, OSA syndrome, and increased BMI substantially affected 24-hour BPM parameters. Increased BMI was associated with disturbed circadian BP profile and increased levels of mean 24-hour BP and nighttime BP.

Key words: Sleep apnoea, 24-hour blood pressure monitoring, obesity, arterial hypertension.

Cardiovascular Therapy and Prevention, 2012; 11(2): 24-28

Синдром обструктивного апноэ во время сна (ОАС) в настоящее время рассматривается как значимый фактор риска (ФР) сердечно-сосудистых заболеваний (ССЗ) и сердечной смерти [1]. Однако существуют трудности в интерпретации вклада нарушений дыхания во сне с риском развития некоторых ССЗ, поскольку у большинства пациентов с ОАС наблюдается сопутствующая артериальная гипертензия (АГ) и ожирение (Ож), которые также являются самостоятельными ФР ССЗ [2]. В последние годы для диагностики АГ и оценки эффективности

проводимого лечения часто используется суточное мониторирование артериального давления (СМАД). С его помощью удается проследить циркадность колебаний АД в условиях повседневной жизнедеятельности пациента. Однако особенности изменений АД при переходе из дневного в ночной периоды, в связи с наличием только АГ, и в случаях присоединения увеличенной массы тела (МТ) окончательно не изучены. Этот аспект требует дополнительного анализа, особенно с учетом имеющихся у больных эпизодов ОАС.

©Коллектив авторов, 2011 e-mail: Cardio69@inbox.ru

Тел.: (4822) 52-05-05, факс: (4822) 52-84-21

[¹Иванов А. П. (*контактное лицо) — научный руководитель диспансера, ¹Эльгардт И. А. — главный врач диспансера, ²Ростороцкая В.В. — врач кардиолог]

Целью настоящего исследования послужила оценка показателей СМАД с прицельным вниманием на динамику АД в дневные и ночные часы с учетом его абсолютных значений и индексов нагрузки давлением у пациентов с АГ при наличии синдрома ОАС при различной МТ пациентов.

Материал и методы

В исследование включены 120 больных, 78 женщин и 42 мужчины среднего возраста 45,4±0,9 лет со средней длительностью A Γ 3,8 \pm 1,2 года, не > 2 степени (ст.), по данным предшествующего амбулаторного наблюдения. У большинства из них (п=98; 81,7 %) систематическое медикаментозное лечение до включения в исследование не проводилось. В зависимости от ОАС выделены пациенты с наличием данного синдрома (n=60), которые составили основную группу (ОГ). В группу сравнения (ГС) вошли остальные 60 больных без ОАС. Группы (гр.) не различались по возрастно-половому признаку и уровню "офисного" АД. В зависимости от индекса массы тела (ИМТ) в каждой гр выделены лица, имевшие его значения > 25 кг/м² (38 или 63,3 % в ОГ и 19 или 31,7 % в ГС). В исследование не включены больные со стойкой АГ, у которых не удавалось полностью отменить антигипертензивные препараты (АГП) при проведении СМАД; также лица с сопутствующими ССЗ: ишемическая болезнь сердца (ИБС), клапанные пороки сердца; пациенты с факторами, предрасполагающими к возникновению апноэ во сне: ЛОР патология, неврологические заболевания, в т.ч. перенесшие транзиторные ишемические атаки (ТИА) или нарушения мозгового кровообращения (HMK).

Наличие и ст. выраженности синдрома ОАС оценивали по результатам мониторирования электрокардиограммы (ЭКГ) и дыхания при использовании аппаратнопрограммного комплекса "Кардиотехника" (фирма Инкарт, С.-Петербург) по данным реопульмонографии. Критерием эпизода апноэ считали выявление в ночные часы периодов остановки дыхания длительностью > 10 с при их частоте > 5 в час [3]. При этом умеренной выраженности синдром ОАС считали при индексе от 5 до 14 эпизодов в час, а средней ст. тяжести ≥ 15 эпизодов апноэ в час [4].

СМАД проводили с помощью комплекса "Shiller ВР-102" на фоне полной отмены АГП за сут. до исследования. Учитывая, что лица с АГ в лечении использовали β-адреноблокаторы (β-АБ), более длительную их отмену считали нецелесообразным, учитывая возникновение на этом фоне тахикардии, которая способна существенно изменять получаемые инструментальные данные. Вычисляли систолическое, диастолическое, пульсовое и среднее АД (САД, ДАД, ПАД, АДср). Оценивали вариабельность (Вар) САД и ДАД за сут (24), день (д) и ночь (н) по величине стандартного отклонения (СО). Определяли индекс нагрузки давлением (ИВ) для САД и ДАД как долю их измерений, превышавших допустимый временной предел, выражающийся в процентах от числа проведенных измерений АД. Анализ значений АД для САД и ДАД проводили раздельно по их абсолютным средним величинам (24, д, н), а также по ИВ для САД и ДАД за указанные периоды. Суточный профиль АД изучали по разнице срАД в дневные и ночные часы, принимая за нормальный профиль (dipper) превышение средних дневных показателей АД над средними ночными

Таблица 1 Показатели СМАД у больных АГ в зависимости от наличия синдрома ОАС (M±SD)

Показатели	ΓC (n=60)	ΟΓ (n=60)	P
ЧСС ср (уд/мин)	72,4±11,6	96,4±4,8	0,037
САД24 (мм рт. ст.)	132,7±17,0	$142,8\pm13,0$	0,034
САДд (мм рт. ст).	134,9±17,1	$144,9\pm14,7$	0,046
САДн (мм рт. ст.)	119,4±18,3	132,7±14,8	0,012
ДАД ₂₄ (мм рт. ст.)	82,3±9,8	$87,9\pm7,2$	0,040
ДАДд (мм рт. ст.)	84,7±9,5	$90,7\pm7,6$	0,035
ДАДн (мм рт. ст.)	72,8±11,7	$76,7\pm9,3$	нд
ПАД ₂₄ (мм рт. ст.)	49,8±8,9	55,8±9,3	0,046
ПАДд (мм рт. ст.)	49,6±9,1	$55,0\pm10,4$	нд
ПАДн (мм рт. ст.)	$46,7\pm10,2$	$56,0\pm10,8$	0,005
АД ср ₂₄ (мм рт. ст.)	98,4±12,0	$106,8\pm7,8$	0,01
АД ср д (мм рт. ст.)	$100,8\pm11,7$	$108,4\pm 9,4$	0,029
АД ср н (мм рт. ст.)	87,7±13,2	$94,9\pm10,1$	0,051
ИВ САД ₂₄ и (%)	44,4±37,6	$66,9\pm29,2$	0,033
ИВ САДд (%)	42,9±37,2	$64,7\pm29,3$	0,038
ИВ САДн (%)	51,6±42,6	$77,0\pm30,6$	0,04
ИВ ДАД ₂₄ (%)	$38,0\pm30,2$	$56,4\pm27,3$	0,041
ИВ ДАДд (%)	38,9±30,6	$58,4\pm27,0$	0,031
ИВ ДАДн (%)	36,3±33,0	44,9±27,2	нд
НС САД (%)	11,6±4,9	$8,3\pm6,1$	0,044
НС ДАД (%)	14,6±6,7	$14,9\pm4,9$	нд

Таблица 2 Показатели СМАД у больных АГ с синдромом ОАС в зависимости от ИМТ ($M\pm SD$)

Показатели	ОГ и ИМТ < 25 кг/ м² (n=22)	ОГ и ИМТ > 25 кг/ м ² (n=25)	Р
ЧСС ср (уд/мин)	74,3±6,1	99,2±10,4	0,032
САД ₂₄ (мм рт. ст.)	144,8±10,4	154,6±14,1	0,031
САДд (мм рт. ст.)	151,6±10,7	157,3±14,7	0,005
САДн (мм рт. ст.)	$138,1\pm10,9$	159,9±14,6	0,012
ДАД ₂₄ (мм рт. ст.)	$88,1\pm4,9$	96,7±6,8	0,004
ДАДд (мм рт. ст.)	94,0±4,8	97,8±6,9	нд
ДАДн (мм рт. ст.)	82,1±5,7	95,6±6,9	0,005
ИВ САД ₂₄ (%)	59,1±14,5	63,2±17,2	нд
ИВ САДд (%)	59,2±16,8	63,1±8,5	0,046
ИВ САДн (%)	60,6±23,0	65,0±4,5	Нд
ИВ ДАД ₂₄ (%)	51,1±18,4	63,5±15,1	0,001
ИВ ДАДд (%)	49,2±16,5	61,3±6,8	0,005
ИВ ДАДн (%)	48,6±27,2	68,9±4,5	0,001
НС САД (%)	8,9±3,4	6,6±3,3	0,044
НС ДАД (%)	12,7±3,9	6,3±1,8	0,001

на 10-20 %. Недостаточным (non-dipper) считали показатель < 10 %, чрезмерным (over-dipper) > 20 %. СМАД проводили и оценивали согласно рекомендациям IV Международной конференции по амбулаторному мониторированию АД [5].

Все полученные в ходе исследования результаты заносились вручную в электронную таблицу Excel и обрабатывались с помощью прикладных статистических функций. Определялись следующие параметры описательной статистики: среднее (М), минимум, максимум, ошибка среднего (m), среднее квадратичное отклонение (SD). Анализ полученных данных проведен методами непараметрической статистики с помощью программы Statistica 5.5. с применением U-критерия Манна-Уитни и χ^2 Пирсона. Для оценки связей между средними параметрами использовали критерий корреляции Спирмена.

Результаты

Результаты СМАД в ОГ и ГС больных АГ имевших и не имевших эпизоды ОАС приведены в таблице 1. Показатели САД за все время мониторирования (24, д, н) были существенно выше при наличии синдрома ОАС, чем при его отсутствии. В целом ДАД₂₄ и ДАДд у больных с синдромом ОАС было достоверно выше, чем у лиц из ГС, тогда как в ночное время различия отсутствовали. Параллельно с этим отмечены значимые отличия в уровне срАД и ПАД. Для пациентов ОГ было характерно увеличение обоих параметров. Одновременно с этим наличие синдрома ОАС ассоциировалось с существенным увеличением ИВ САД и ДАД за исключением последнего показателя в ночные часы. Обращает на себя внимание, что самый высокий показатель ИВ САД наблюдался у больных АГ и синдромом ОАС в ночное время, тогда как ИВ ДАД преобладал в дневные часы. Анализ суточного профиля АД по величине ночного снижения (ВНС) АД в сравниваемых гр. выявил отсутствие адекватного НС САД при синдроме ОАС. В то же время существенной разницы по ВНС ДАД не выявлено. Учитывая данные суточного профиля АД у больных ГС в целом у 40 (66,7 %) пациентов выявлен его нормальный суточный ритм (dipper), тогда как недостаточное (non-dipper) снижение имело место у 18 (30,0 %), а чрезмерное снижение (over-dipper) зарегистрировано лишь у 2 (3,3 %) обследованных. Напротив, ОГ, наоборот, чаще встречался вариант non-dipper (n=36; 60,0 %), а профили типа dipper и over-dipper имелись у 16 и 8 соответственно (26,7 % и 13,3 %; p=0,036 и 0,042, соответственно).

В то же время избыточная МТ в комбинации с синдромом ОАС у больных АГ имеет некоторые особенности анализируемых параметров. Показатели СМАД у этих пациентов с ИМТ > или $< 25 \ \text{кг/m}^2$ представлены в таблице 2.

Как следует из представленных данных, средние показатели СМАД за все время наблюдения оказались достоверно выше у больных с ИМТ $> 25 \text{ кг/м}^2$. В то же время увеличение ДАД оказалось наиболее существенным в ночные часы и в целом за сут, тогда как различий по параметрам ДАД днем в сравниваемых гр. не выявлено. Аналогично средним показателям, у больных с ИМТ > 25 кг/м 2 имелось увеличение ИВ для САД и ДАД за исключением ночного индекса для САД. Наряду с этим, у пациентов с синдромом ОАС и ИМТ $> 25 \text{ кг/м}^2$ имелись и более низкие показатели НС АД. При этом если у пациентов с нормальной МТ и синдромом ОАС вариант попdipper регистрировался у 5 (20 %), то среди пациентов с ИМТ > 25 кг/м 2 он имел место уже у 18 (47,4 %). В свою очередь, суточный профиль типа over-dipper регистрировался в сравниваемых гр. у 7 и 16 (31,8 и 42,1 %) больных, соответственно.

Таблица 3 Соотношение различных суточных профилей АД при комбинациях АГ, синдрома ОАС и уровней ИМТ (абс/%%)

Гр. наблюдения	Суточный профиль dipper	Суточный профиль non-dipper	Суточный профиль over-dipper
AΓ без OAC (n=60)	40 / 66,7	18 / 30,0	2 / 3,3
$A\Gamma$ c OAC (n=60)	16 / 26,7	36 / 60,0	8 / 13,3
AΓ с OAC и ИМТ>25 кг/м ² (n=38)	4 / 10,5	18 / 47,4	16 /42,1
AΓ c OAC и ИМТ<25 кг/м² (n=22)	10 / 48,2	5 / 20,0	7 / 31,8
АГ без ОАС и ИМТ>25 кг/м ² (n=19)	10 / 52,6	7 / 36,8	2 / 10,6
АГ без ОАС и ИМТ<25 кг/м ² (n=41)	34 / 82,9	5 / 12,2	2 / 4,9

У остальных обследованных отмечено нормальное НС АД.

Необходимо подчеркнуть, что при сопоставлении данных СМАД в ГС в зависимости от ИМТ существенных различий выявить не удалось. Однако следует отметить особенности суточного профиля АД в сравниваемых гр. Нормальный профиль АД (dipper), регистрировавшийся у пациентов ГС, чаще имелся как при наличии, так и при отсутствии избыточной МТ у 10 и 34 обследованных (52,6 % и 82,9 %), соответственно. В свою очередь вариант поп-dipper имел место у этих пациентов в 7 и 5 наблюдениях (36,8 % и 12,2 %), соответственно, а over-dipper — у 2 обследованных в каждой гр., что составило 10,6 % и 4,9 %, соответственно.

Представляет интерес сопоставление нарушений суточного профиля АД у обследованных пациентов. Результаты исследования представлены в таблице 3. Наиболее часто сохраненный суточный профиль dipрег определялся у пациентов из ГС, при этом не выявлено существенных различий в зависимости от ИМТ. Одновременно с этим такой вариант имели почти половина больных ОГ и нормальным ИМТ. Но все же наиболее часто встречались нарушения в виде nondipper и over-dipper. При этом если учитывалось только наличие OAC, то чаще имел место вариант non-dipper. Следует подчеркнуть, что присоединение к нему избыточной МТ несколько снижало частоту варианта non-dipper c 60 % до 47,4 % (p<0,05) и более значимо увеличивало количество пациентов, имевших вариант over-dipper с 13,3 % до 42,1 % (p<0,01). В то же время отсутствие ОАС при увеличении ИМТ чаще ассоциировалось с недостаточным НС АД, чем в случаях с нормальной MT - 36.8 % и 12,2 %, соответственно, но, ввиду малого числа наблюдений, статистическая значимость отсутствовала.

Обсуждение

Синдром ОАС достаточно распространен, но вместе с тем является часто недиагностированным состоянием, связанным с несколькими сердечнососудистыми $\Phi P - C J$, Ож, АГ [6,7]. Одним из моментов, отрицательно влияющим на функционирование

сердечно-сосудистой системы, признается цикличность изменений АД, что существенно увеличивает риск поражения миокарда левого желудочка (ЛЖ) [8]. Еще одним неблагоприятным фактором считается избыточная МТ, когда ИМТ увеличивается параллельно с индексом апноэ/гипопноэ (ИАГ) [9,10].

Проведенное исследование выявило существенное увеличение уровня АД, связанное с наличием ОАС. При этом повышенными являлись не только ночное, но и дневное АД, когда средние абсолютные значения САД и ДАД превышали аналогичные показатели у пациентов с АГ без апноэ в 1,1 раза. В то же время наиболее значимо реагировал ИВ для САД и ДАД, увеличенный у этих больных в 1,5 раза. Подобные изменения некоторые авторы связывают с гиперактивностью симпатической нервной системы (СНС) [11]. О наличии гиперактивности СНС может свидетельствовать также имеющаяся у этих пациентов тахикардия с увеличением частоты сердечных сокращений (ЧСС) в среднем в 1,3 раза (p<0,01). Вместе с тем, описанное состояние весьма характерно и для пациентов с избыточной МТ, в т.ч. и имеющих ОАС [12].

Примечательно, что даже с учетом фактора увеличенного ИМТ у пациентов с АГ и синдромом ОАС, большинство параметров СМАД не изменилось, а ИВ сохранялся на одинаковом уровне, сопоставимым с показателем у пациентов с нормальным ИМТ, Однако у пациентов с избыточной МТ существенно изменилась разница среднедневных и средненочных уровней АД. При этом, если для САД этот процесс оказался не столь существенным, и его HC уменьшилось с $8,3\pm6,1\%$ до $6,6\pm3,3\%$ (т. е. в 1,2 раза), то для ДАД эти показатели были на уровне $14,9\pm4,9$ % и $6,3\pm1,8$ % (т. е. снижение в 2,4 раза). Обращает на себя внимание тот факт, что в ОГ наличие избыточной МТ характеризовалось увеличением числа больных с суточным профилем АД over-dipper с 13,3 % в отсутствии увеличенного ИМТ до 42,1 % при его значениях, превышающих 25 кг/м 2 (p<0,01). Этот вариант, возможно, является наиболее неблагоприятным, свидетельствующим о более выраженных изменениях сердечно-сосудистой системы у больных АГ с ОАС и избыточной МТ. При этом отмечена связь чрезмерного НС АД с периферическими вазоконстрикторными эффектами [13], более выраженной ночной гипоксией из-за увеличения числа эпизодов ОАС [14], а так же значимыми метаболическими нарушениями ввиду увеличения ИМТ [15].

Таким образом, повышение индексов нагрузки давлением за все время проведения СМАД, изменения суточного профиля АД с увеличением частоты регистрации варианта over-dipper следует считать наиболее неблагоприятными факторами, что необходимо учитывать в риске при стратификации больных АГ с наличием ОАС и увеличением ИМТ.

Литература

- Babak S.P., Golubew L.A. Chronic insomnia and obstructive sleep apnea a dream: a modern dilemma in a clinical practice of the internist. RMG 2010; 18 (5): 219-23. Russian (Бабак С.П., Голубев Л.А. Хроническая инсомния и обструктивное апноэ сна: современная дилемма в клинической практике терапевта. PMX 2010; 18(5): 219-23).
- Litvin A.J., Chazova I.E. Obstructive sleep syndrome during a dream: the mechanism of occurrence, clinical value, communication with cardiovascular disease, principles of treatment. Cardiol vestnic 2009; 2: 89-103. Russian (Литвин А.Ю., Чазова И.Е. Синдром обструктивного апноэ во время сна: механизм возникновения, клиническое значение, связь с сердечно-сосудистой заболеваемостью, принципы лечения. Кардиол вест 2009; 2: 89-103).
- Manser R.M., Rechford P., Pierce R.J., et al. Impact for defining apneahypopneas in the Apnea-Hypopnea Index. Chest 2001; 120: 909-14.
- Drager L.F., Borfolotto L.A., Lorenzi M.C., et al. Early sings of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 2005; 56: 1121-30.
- Kotsis V., Stabouli S., Pitiriga V., et al. Ambulatory blood pressure monitoring and target organ damage: effects of age and sex. Blood Press Monit 2006: 11: 9-15
- Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000; 342: 1378-84.

- Drager L.F., Pereira A.C., Barreto-Filho J.A., et al. Phenotypic characteristics associated with hypertension in patients with obstructive sleep apnea. J Hum Hypertens 2006; 20: 523-8.
- Bradley T.D., Floras J.S. Sleep apnea and heart failure: part I. Obstructive sleep apnea. Circulation 2003; 107: 1671-8.
- Arias M.A., Sanchez A.M. Obstructive sleep apnea in overweight subjects. Hypertension 2006; 47: 1112-8.
- Peters R.W. Obstructive sleep apnea and cardiovascular disease. Chest 2005; 127: 1-3.
- Brotman D.J., Davidson M.B., Bourmitri M., Vidt D.G. Impaired diurnal blood pressure variation and all-cause mortality. Am J Hypertension 2008; 21: 92-7.
- Kato M. Impaired autonomic function in patients with obstructive sleep apnea. Hypertens Res 2007; 30: 659-60.
- Zou D., Grote L., Eder D.H., et al. A double-blind, crossover study of Doxazosin and Enalapril on peripheral vascular tone and nocturnal blood pressure in sleep apnea patients. Sleep Med 2010; 11: 325-8.
- Sekizuka H., Kida K., Akashi Y.J., et al. Relationship between sleep apnea syndrome and sleep blood pressure in patients without hypertension. J Cardiol 2010; 55: 92-8.
- Kario K. Obstructive sleep apnea syndrome and hypertension: ambulatory blood pressure. Hypertens Res 2009; 32: 428-32.