Гендерные особенности факторов риска и их взаимосвязь с развитием инфаркта миокарда у пациентов различных возрастных групп

Суспицына И. Н., Сукманова И. А.

КГБУЗ "Алтайский краевой кардиологический диспансер". Барнаул, Россия

Цель. Изучить гендерные особенности факторов риска и оценить их взаимосвязь с развитием инфаркта миокарда (ИМ) у пациентов различных возрастных групп.

Материал и методы. В исследование включены 188 мужчин и женщин с Q и неQ-ИМ в возрасте 45-74 лет, разделенных на 4 группы в зависимости от пола и возраста. У всех пациентов были оценены клинико-анамнестические данные, показатели липидного, углеводного обменов, уровни половых гормонов, С-реактивного белка, оценены уровни гиподинамии, депрессии и тревожности с помощью опросников. Для определения взаимосвязи факторов риска (ФР) с развитием ИМ с помощью статистических методов были разработаны математические модели оценки отношения шансов развития нефатальных случаев ИМ для мужской и женской популяции пациентов.

Результаты. Для обследованных мужчин наиболее значимыми ФР развития ИМ явились: курение, нарушения липидного обмена, избыточная масса тела; для мужчин пожилого возраста дополнительными ФР явились нарушения углеводного обмена с развитием

инсулинорезистентности, а также преимущественно абдоминальный тип ожирения. Для женщин с ИМ наиболее значимыми ФР оказались нарушения углеводного обмена, преимущественно за счет развития сахарного диабета 2 типа, артериальная гипертензия, ожирение с развитием его абдоминального типа и нарушения липидного обмена.

Заключение. Разработанные математические модели оценки отношения шансов позволяют оценить вероятность развития нефатального ИМ у мужчин и женщин с учетом их возраста и набора ФР. Ключевые слова: инфаркт миокарда, факторы риска, гендерные различия, абдоминальное ожирение, инсулинорезистентность.

Кардиоваскулярная терапия и профилактика, 2016; 15(3): 37–42 http://dx.doi.org/10.15829/1728-8800-2016-3-37-42

Поступила 28/01-2016 Принята к публикации 06/04-2016

Gender specifics of the risk factors and relation with myocardial infarction in patients of various age groups

Suspitsina I.N., Sukmanova I.A. Altai Regional Cardiological Dispensary. Barnaul, Russia

Aim. To study gender specifics of risk factors and to assess their relation with myocardial infarction development (MI) in patients of various age subgroups

Material and methods. Totally, we included 188 men and women with Q-and non-Q MI at the age 45-74 y.o., selected to 4 groups depending on age and gender. For all patients we evaluated clinical and anamnestic data, lipid profile, carbohydrate metabolism markers, sex hormones, C-reactive protein; we assessed hypodynamia level, depression and anxiety using questionnaires. To findout a relation of risk factors (RF) with MI development, statistically, we invented mathematical models of assessment of odds ratio for non-fatal MI cases for male and female population of patients.

Results. For the assessed males the most significant risk factors were smoking, lipid disorders, overweight; for older males additionally RF

were carbohydrate metabolism disorders with insulin resistance development, and mostly abdominal obesity. For women, main RF were carbohydrate metabolism disorders due to 2 type diabetes, arterial hypertension, obesity with its abdominal type, and lipid disorders.

Conclusion. The invented mathematical models of evaluation of odds ratios make it to estimate the probability of non-fatal MI in men and women using their age and collection of RF.

Key words: myocardial infarction, risk factors, gender differences, abdominal obesity, insulin resistance.

Cardiovascular Therapy and Prevention, 2016; 15(3): 37–42 http://dx.doi.org/10.15829/1728-8800-2016-3-37-42

АГ — артериальная гипертензия, ИБС — ишемическая болезнь сердца, ИМ — инфаркт миокарда, ИМТ — индекс массы тела, ЛВП — липопротеиды высокой плотности, ЛНП — липопротеиды низкой плотности, НТГ — нарушение толерантности к углеводам, ОХС — общий холестерин, ОШ — отношение шансов, СД — сахарный диабет, СД-2 — СД 2 типа, СРБ — С-реактивный белок, ССЗ — сердечно-сосудистые заболевания, ТГ — триглицериды, ФР — факторы риска, НОМА-IR — индекс инсулинорезистентности.

Введение

Ишемическая болезнь сердца (ИБС) и, в частности, инфаркт миокарда (ИМ) остаются ведущими причинами заболеваемости и смертности населения

России. Различия по уровню заболеваемости и смертности от болезней системы кровообращения в РФ по сравнению с ведущими западноевропейскими странами с 1980г выросли в 2-7 раз и в 2-6 раз для

 * Автор, ответственный за переписку (Corresponding author):

e-mail: jeivan@yandex.ru

Тел.: 8 (923) 643-42-60; факс: 8 (3852) 54-89-30

[Суспицына И. $H.^{\star}-$ врач кардиологического отделения для больных острым инфарктом миокарда, Сукманова И. A.-д. м.н., заведующая отделением].

мужского и женского населения, соответственно [1, 2]. Несмотря на некоторое снижение заболеваемости от ИМ в РФ в течение последнего десятилетия, показатель летальности сохраняется достаточно высоким и даже увеличивается: с 10,1% до 11,6% [2].

Это во многом объясняется социальными, политическими, экономическими причинами, а также изменением образа жизни и влиянием связанных с ним факторов риска (ФР). Основными ФР, определяющими высокий уровень заболеваемости и преждевременную смертность населения страны от ИБС и ИМ являются: артериальная гипертензия (АГ) (35,5%), нарушения липидного обмена (23%), курение (17,1%), нездоровое питание, недостаточное употребление фруктов и овощей (12,9%), ожирение с формированием его абдоминального типа (12,5%), злоупотребление алкоголем (11,9%), гиподинамия и психосоматические нарушения (9%) [1, 2].

В настоящее время известно несколько моделей оценки риска развития различных сердечнососудистых заболеваний (ССЗ) — это американская Фремингемская шкала риска, европейская шкала SCORE (Systematic Coronary Risk Evaluation), шкала риска Рейнольдса, шкала ASSIGN (Assessing Cardiovascular Risk to Scottish Intercollegiate Guidelines Network/SIGN to Assign Preventative Treatment), pasработанная в Шотландии, а также шкала риска ORISK (Oresearch Cardiovascular Risk Algorithm) (Великобритания) [3, 4]. Данные модели риска нацелены на прогнозирование различных сердечно-сосудистых событий, имеют определенные ограничения и вариабельность предсказательной способности, что связано с разнообразием региональных, этнических групп обследуемого населения и невозможностью охвата всех известных ФР [3, 4]. Углубленное изучение ФР ИМ с учетом их гендерных и возрастных особенностей является актуальным для возможности применения дифференцированного подхода в лечении и профилактике заболевания. Расчет риска развития ИМ с учетом пола, возраста пациента и особенностей его ФР будет способствовать разработке в дальнейшем индивидуальных профилактических программ для каждого пациента.

 Таблица 1

 Общая характеристика пациентов,

 включенных в исследование

Группы пациентов, п	Средний возраст
Мужчины среднего возраста, n=66	53,9±0,5 лет
Мужчины пожилого возраста, n=46	66,2±0,8 лет
Женщины среднего возраста, n=32	54,7±0,9 лет
Женщины пожилого возраста, n=44	69,9±0,7 лет
Группа контроля, n=55	59,1±0,6 лет

Цель — изучить гендерные особенности ФР и оценить их взаимосвязь с развитием ИМ у пациентов различных возрастных групп.

Материал и методы

В исследование включены 188 пациентов с ИМ в возрасте 45-74 лет; средний возраст — $60,8\pm0,6$ лет: 112 (59,6%) мужчин и 76 (40,2%) женщин. Пациенты были разделены на 4 группы в зависимости от пола и возраста. Первую группу составили 66 мужчин в возрасте 45-59 лет (средний возраст 53,9 $\pm0,5$), вторую — 46 мужчин в возрасте 60-74 лет (средний возраст $66,2\pm0,8$), третью — 32 женщины в возрасте 45-59 лет (средний возраст $54,7\pm0,9$), четвертую группу составили 44 женщины в возрасте 60-74 лет (средний возраст $69,9\pm0,7$). Диагноз ИМ ставили на основании третьего универсального определения ИМ согласно рекомендациям Европейского общества кардиологов [5]. Группу контроля составили 55 человек без доказанной ИБС в возрасте 45-74 года, средний возраст $59,1\pm1,2$ лет (таблица 1).

Проведение настоящего исследования было одобрено этическим комитетом Алтайского государственного медицинского университета. Все пациенты подписывали форму информированного согласия до момента включения в исследование. Не включали пациентов с сахарным диабетом (СД) 1 типа, инсулинопотребным СД 2 типа (СД-2), аутоиммунными, острыми инфекционными, онкологическими заболеваниями, с декомпенсированными заболеваниями щитовидной железы, с тяжелыми нарушениями функции почек и печени. Всем пациентам проводили стандартные лабораторные исследования с определением показателей липидного обмена — общий холестерин (ОХС), триглицериды (ТГ), липотпротеиды низкой плотности (ЛНП), липопротеиды высокой плотности (ЛВП), углеводного обмена с оценкой уровня инсулина и расчетом гликемического индекса HOMA-IR, С-реактивного белка (СРБ), оценивался уровень половых гормонов — тестостерон для мужчин и эстрадиол для женщин. С помощью опросника (авторы К. Г. Гуревич и Е. Г. Фабрикант) определяли уровень гиподинамии, для определения степени тревожности и депрессии была использована госпитальная шкала тревоги и депрессии HADS (The Hospital Anxiety and Depression Scale).

Статистическую обработку полученных результатов проводили с помощью программы Statistica 6.1. Для оценки типа распределения признаков использовали показатели эксцесса и асимметрии. Значения непрерывных величин представлены в виде M±m, где M — выборочное среднее арифметическое и т - стандартная ошибка среднего. В случаях нормального распределения для сравнения выборок использовали t-критерий Стьюдента. В случае распределений, не соответствующих нормальному закону, использовали непараметрические U-критерий Манна-Уитни и Т-критерий Вилкоксона. Для выявления предикторов развития ИМ использовали однофакторный и многофакторный логистический регрессионный анализ. Уровень статистической значимости при проверке нулевой гипотезы принимали соответствующий p<0,05. При сравнении нескольких групп между собой использовали поправку Бонферрони. Обработку и графическое представление данных проводили с помощью компьютерных программ и Excel 2007.

 Таблица 2

 Распространенность основных ФР ИМ среди обследованных пациентов

ФР ИМ	Мужчины среднего возраста, n=66	Мужчины пожилого возраста, n=46	p	Женщины среднего возраста, n=32	Женщины пожилого возраста, n=44	p
Курение	54 (81,8%)	36 (78,3%)	0,8	7 (21,9%)	3 (6,8%)	0,1
Избыточная масса тела	28 (42,4%)	17 (36,9%)	0,5	9 (28,1%)	13 (29,5%)	0,8
Ожирение	16 (24,2%)	14 (30,4%)	0,6	19 (59,4%)	20 (45,5%)	0,1
Абдоминальное ожирение	10 (62,5%)	9 (60%)	0,9	12 (63,2%)	15 (53,6%)	0,7
ΑΓ	40 (60,6%)	40 (87,0%)	0,005	27 (84,4%)	40 (90,0%)	0,6
НТГ	2 (3%)	4 (8,7%)	0,4	2 (6,3%)	5 (11,4%)	0,7
СД-2	7 (10,6%)	8 (17,4%)	0,4	9 (28,1%)	19 (43,2%)	0,3
Инсулинорезистентность	18 (27,3%)	12 (26,1%)	0,9	8 (25%)	18 (43,9%)	0,9
Дислипидемия	57 (86,4%)	42 (91,3%)	0,9	30 (93,4%)	42 (95,5%)	0,8

Результаты и обсуждение

Курение, как один из важнейших ФР развития ИМ [6], выявлено у 54 (81,8%) мужчин среднего возраста и 36 (78,3%) пожилых (р=0,8). Среди женщин курильщицами были 7 (21,9%) и 3 (6,8%) пациентки среднего и пожилого возраста, соответственно (р=0,1) (таблица 2). Таким образом, среди обследованных лиц курение оказалось более распространенным ФР для мужчин, однако среди женщин среднего возраста частота курения достигает ~20%, что подчеркивает важность борьбы с курением в общей популяции населения.

Избыточная масса тела и ожирение являются независимыми предикторами развития ИМ, причем именно абдоминальный тип ожирения повышает риск летального исхода после перенесенного ИМ [7, 8]. У обследованных мужчин показатель индекса массы тела (ИМТ) составил $26,6\pm0,3$ кг/ M^2 , у женщин — 31,1 \pm 0,7 кг/ M^2 (p=0,0001), что свидетельствует о большей значимости ожирения в женской популяции пациентов. В группе мужчин среднего и пожилого возрастов преобладали пациенты с избыточной массой тела — 45 (40,2%), лиц с ожирением различной степени тяжести — 30 (26,7%). Среди мужчин с ожирением у 10 (62,5%) лиц среднего возраста и 9 (60%) пожилого был определен его абдоминальный тип. В группе женщин среднего и пожилого возрастов преобладали лица с ожирением различной степени тяжести — 47 (61,8%). У 12 (63,2%) женщин среднего возраста с ожирением и у 15 (53,6%) пожилого диагностирован его абдоминальный тип (таблица 2). С учетом полученных данных выявлено, что среди мужчин с ИМ преобладают лица с избыточной массой тела, тогда как среди женщин больше частота ожирения различной степени тяжести, (р=0,001). Распространенность абдоминального ожирения велика среди всех групп обследованных пациентов и достигает уровня 60%.

Артериальная гипертензия (АГ), как общеизвестный ΦP развития ИМ, была выявлена у 40

(60,6%) мужчин среднего возраста и 40 (87%) пожилых (р=0,005); неконтролируемое течение АГ (2 и 3 степени АГ с нестабильным ее течением) диагностировано у 10 (25%) мужчин среднего возраста 18 (45%), пожилых. У большинства женщин среднего и пожилого возрастов — 67 (88,2%) также была диагностирована АГ; ее неконтролируемое течение выявлено у 12 (37,5%) и 18 (23,7%) пациенток среднего и пожилого возрастов, соответственно (таблица 2). В целом, АГ широко распространена среди обследованных пациентов, частота ее диагностики превышает 60%; в женской популяции выявлено больше пациенток с неконтролируемым течением АГ.

Нарушения углеводного обмена, как одного из факторов прогрессирования ИБС [9-11], обнаружены у 21 (18,8%) мужчины с ИМ. Нарушение толерантности к углеводам (НТГ) диагностировано у 2 (3%) пациентов среднего возраста и у 4 (8,7%) пожилых (p=0,4), а СД-2 выявлен у 7 (10,6%) мужчин среднего возраста и 8 (17,4%) пожилых (p=0,4). Среди женщин НТГ обнаружено у 2 (6,3%) пациенток среднего возраста и у 5(11,4%) пожилых (p=0,7), СД-2 диагностирован у 9 (28,1%) женщин среднего возраста и у 19 (43,2%) пожилых (р=0,3). Инсулинорезистентность как важный кардиоваскулярный ФР [9], диагностирована у 18 (27,3%) мужчин среднего возраста и у 12 (26,1%) пожилых (p=0,9) (таблица 2). Средний уровень инсулина у мужчин среднего возраста составил 13.9 ± 1.9 мкМЕ/мл, у пожилых — 12.9 ± 1.6 меМЕ/мл (p=0.7). Показатель индекса инсулинорезистентности (HOMO-IR) составил $3,1\pm0,5$ мкЕД/мл и $3,4\pm0,5$ меЕД/мл для лиц среднего и пожилого возрастов, соответственно (p=0,2). Инсулинорезистентость выявлена у 8 (25%) женщин среднего возраста и у 18 (43,9%) пожилых (р=0,9). Уровень инсулина у пациенток среднего возраста составил $8,7\pm1,2$ мкМЕ/мл, у пожилых — $9,5\pm1,2$ мкМЕ/мл (p=0,7). Индекс HOMO-IR у женщин составил $2,3\pm0,3$ мкЕД/мл для лиц среднего возраста и $2,6\pm0,4$ мкЕД/мл — для пожилых (р=0,5) (таблица 3). В целом, у женщин чаще, чем

 Таблица 3

 Показатели углеводного и липидного обменов у пациентов с ИМ

	Мужчины среднего возраста, n=66	Мужчины ожилого возраста, n=46	p	Женщины среднего возраста, n=32	Женщины пожилого возраста, n=44	р
Глюкоза крови, натощак, ммоль/л	$5,1\pm0,1$	$5,6\pm0,2$	0,03	$5,7\pm0,2$	6,1±0,1	0,1
Уровень инсулина, мкМЕ/мл	13,9±1,9	12,9±1,6	0,7	$8,7\pm1,2$	9,5±1,2	0,7
HOMO-IR, мкЕД/мл	$3,1\pm0,5$	$3,4\pm0,5$	0,2	$2,3\pm0,3$	$2,6\pm0,4$	0,5
ОХС, ммоль/л	4,4±0,1	4,7±0,1	0,2	5,1±0,2	4,6±0,2	0,07
ЛНП, ммоль/л	2,5±0,1	$2,8\pm0,1$	0,1	2,8±0,2	2,7±0,1	0,7
ЛВП, ммоль/л	$0,96\pm0,03$	1,03±0,1	0,1	1,04±0,1	$0,9\pm0,04$	0,6
ТГ, ммоль/л	1,7±0,10	1,7±0,1	0,2	2,5±0,1	2,0±0,1	0,02

Таблица 4 Психосоматический статус и уровень гиподинамии у обследованных пациентов

	Мужчины среднего возраста	Мужчины пожилого возраста	p	Женщины среднего возраста	Женщины пожилого возраста	p
Гиподинамия	40 (60,6%)	36 (78,3%)	0,08	24 (75%)	35 (79,5%)	0,8
Тревожность	13 (19,7%)	6 (13%)	0,5	13 (40,6%)	7 (15,9%)	0,03
Депрессия	5 (7,6%)	8 (17,4%)	0,2	5 (15,6%)	19 (43,2%)	0,02

у мужчин имели место нарушения углеводного обмена, преимущественно за счет развития СД-2; у мужчин, в свою очередь, чаще выявлялся повышенный уровень инсулина с развитием инсулинорезистентности.

Дислипидемия, как один из факторов, способствующих, с высокой долей вероятности, повышенному риску ИМ [12], выявлена у 57 (86,4%) мужчин среднего возраста и у 42 (91,3%) пожилых (р=0,9) (таблица 2). Уровень ОХС у мужчин составил $4,4\pm0,1$ и $4,7\pm0,1$ ммоль/л (p=0,2), ЛНП — $2,5\pm0,1$ и $2,8\pm0,1$ ммоль/ π (p=0,1), ЛВП — 1,0±0,03 и 1,03±0,1 ммоль/ π (p=0,2), $T\Gamma = 1,7\pm0,1$ и $1,7\pm0,1$ ммоль/л (p=0,9) для лиц среднего и пожилого возрастов, соответственно (таблица 3). Нарушения липидного обмена выявлены также у большинства женщин с ИМ: у 30 (93,4%) пациенток среднего возраста и у 42 (95,5%) пожилых (р=0,8) (таблица 2). Средний уровень ОХС у женщин составил $5,1\pm0,2$ и $4,6\pm0,2$ ммоль/л (p=0.07), ЛНП — 2.8 ± 0.2 и 2.7 ± 0.1 ммоль/л (p=0.7), ЛВП — 1,5 \pm 0,1 и 0,9 \pm 0,04 ммоль/л (p=0,6), а ТГ — $2,5\pm0,1$ и $2,0\pm0,1$ ммоль/л (p=0,02) для лиц среднего и пожилого возрастов, соответственно (таблица 3). Таким образом, у мужчин с ИМ нарушения липидного обмена в большей степени определяются повышением уровня ЛНП, тогда как у женщин повышением уровня ОХС, ЛНП и ТГ.

Согласно результатам современных исследований [7, 8, 13, 14], преждевременное наступление менопаузы способствует прогрессированию ИБС и развитию ее фатальных осложнений у женщин. Среди женщин среднего возраста у 10 (31,3%) пациенток была сохранена менструальная функция, но в данной группе было 7 (21,9%) женщин с ранней менопаузой (возраст наступления мено-

паузы <45 лет) и 6 пациенток (18,7%) со сниженным уровнем эстрадиола. Среди женщин с сохраненной менструальной функцией выявлены комбинации таких Φ P, как АГ, СД-2, абдоминальное ожирение, курение, а также нарушение липидного обмена. В группе женщин пожилого возраста у 11 (25%) пациенток выявлено раннее наступление менопаузы. Уровень эстрадиола в этой группе женщин оказался в пределах нормальных значений. Средний уровень тестостерона у мужчин оказался в пределах нормы и составил 12,6 \pm 0,8 нмоль/л и 12,9 \pm 0,9 нмоль/л для лиц среднего и пожилого возрастов, соответственно (p=0,8), однако у 4 (6%) мужчин среднего возраста уровень тестостерона оказался ниже нормы.

В последние годы большое внимание уделяется изучению связи психосоциальных ФР с развитием ИМ. Среди мужчин гиподинамия присутствовала у 40 (60,6%) пациентов среднего возраста и у 36 (78,3%) пожилых (p=0,08). Большинство женщин также имели сниженный уровень физической активности — 24 (75%) пациентки среднего возраста и 35 (79,5%) пожилых (p=0,8). Среди мужчин депрессия выявлена у 5 (7,6%) пациентов среднего возраста и 8 (17,4%) пожилых (p=0,2); среди женщин среднего возраста депрессия выявлена у 5 (15,6%) пациенток, а среди пожилых — у 19 (43,2%)(р=0,02). Повышенный уровень тревожности имел место у 13 (19,7%) мужчин с ИМ среднего возраста и 6 (13%) пожилых (р=0,5). Среди женщин повышенный уровень тревожности выявлен у 13 (40,6%) пациенток среднего возраста и у 7 (15,9%) пожилых (р=0,03) (таблица 4). В целом, психосоциальные ФР оказались особенно значимы для женщин с ИМ.

Пример математических моделей оценки ОШ развития нефатальных случаев ИМ у мужчин и женщин в зависимости от ΦP

Мужчины						
ЛНП (ммоль/л)	Инсулин (мкМЕ/мл)	HOMO-IR (мкЕД/мл)	СРБ (мг/л)	Курение	p (%)	Риск (в %)
3	5	2	2	0	78,3%	Высокий

Примечание: курение — наличие факта курения у пациента (0 — пациент не курит, 1 — пациент курит), р (%) — априорная вероятность риска развития ИМ (в %), риск — при расчетном уровне риске >76,7% для мужчин степень риска определяется как высокая.

Параметры уравнения логистической регрессии							
a	ЛНП	Инсулин	HOMO-IR	СРБ	Курение	p (a)	у
-2,65	-1,17	1,11	2,94	0,25	0,91	76,7	1,3

Примечание: а — свободная константа, у — значение функции логистической регрессии. Если коэффициенты имеют положительный знак, то с увеличением значения соответствующих предикторов вероятность развития ИМ увеличивается, если знак отрицательный, то с увеличением значения предиктора вероятность ИМ уменьшается. Сила влияния каждого предиктора на значение у и, следовательно, на вероятность развития ИМ пропорциональна абсолютному значению соответствующего коэффициента.

Женщины				
ЛВП (ммоль/л)	ТГ (ммоль/л)	СРБ (мг/л)	p (%)	Риск
1.5	2.	12	75.4%	Низкий

Примечание: р (%) — априорная вероятность риска развития ИМ (в %), риск — при расчетном уровне риска >78,4% для женщин степень риска определяется как высокая.

Параметры уравнения логистической регрессии							
а ЛВП ТГ СРБ p (a) y							
-3,21	-2,18	3,38	0,07	78,4	1,1		

Примечание: а — свободная константа, у — значение функции логистической регрессии. Если коэффициенты имеют положительный знак, то с увеличением значения соответствующих предикторов вероятность развития ИМ увеличивается, если знак отрицательный, то с увеличением значения предиктора вероятность ИМ уменьшается. Сила влияния каждого предиктора на значение у и, следовательно, на вероятность развития ИМ пропорциональна абсолютному значению соответствующего коэффициента.

Для оценки взаимосвязи ФР с возникновением ИМ отдельно для мужчин и женщин были разработаны математические модели оценки отношения шансов (ОШ) развития нефатальных случаев ИМ. Для этой цели отдельно в группах мужчин и женщин с помощью критериев проверки статистических гипотез определили наиболее значимые ΦP — предикторы, связанные с развитием ИМ. Наиболее значимыми считали те ФР, показатели которых обнаруживали различия между группой с ИМ и контрольной группой с вероятностью нулевой гипотезы (p) <0,15. На втором этапе прогностическую значимость предварительно выделенных ФР уточнили с помощью метода многофакторной бинарной логистической регрессии. Если рассчитанная вероятность превышала значение априорной вероятности ИМ, то пациента относили к группе высокого риска ИМ. На третьем этапе анализировали адекватность классифицирующей способности полученных регрессионных моделей по уровню чувствительности и специфичности, величине ОШ с использованием критерия χ². Анализ адекватности полученных регрессионных моделей показал, что они одинаково пригодны для предсказания случаев ИМ (точность 94,7%) и для отсутствия ИМ (точность 81,0%), т.е. имеют высокую чувствительность и специфичность. Величина общего процента верных классификаций (91,8%) является очень высокой, что свидетельствует о высокой прогностической способности этих регрессионных моделей. На четвертом этапе расчет вероятности развития ИМ был реализован в программной среде Excel 2007 в виде двух математических моделей оценки ОШ развития нефатальных случаев ИМ (отдельно для мужской и женской популяции пациентов). В данные математические модели необходимо внести значения показателей выявленных ФР; для мужчин этими факторами оказались уровни ЛНП, инсулина, индекс HOMO-IR, уровень СРБ, а также факт курения; для женщин — уровень ЛНП, ТГ, а также СРБ. В результате автоматически будет оценено расчетное значение ОШ развития ИМ (р) процентах у конкретного пациента и, тем самым, определена категория риска: "высокий" — для мужчин данное расчетное значение для определения высокого риска должно быть >76,6%, для женщин >78,4% или "низкий" — для мужчин <76,6%, для женщин <78,4% (таблица 5).

Заключение

Таким образом, для мужчин среднего возраста с ИМ наиболее значимыми ФР оказались курение, нарушения липидного обмена, преимущественно за счет повышения уровня ЛНП, избыточная масса тела; для мужчин пожилого возраста дополнительными ФР, наряду с вышеперечисленными, явля-

ются АГ и гиподинамия, нарушения углеводного обмена с развитием инсулинорезистентности, а также преимущественно абдоминальный тип ожирения. Для женщин с ИМ наиболее значимыми ФР оказались нарушения углеводного обмена, преимущественно за счет развития СД-2, неконтролируемое течение АГ, ожирение с развитием его абдоминального типа, нарушение липидного обмена, преимущественно за счет снижения уровня ЛВП, повышения уровня ЛНП и ТГ, для женщин среднего возраста — повышение уровня ОХС. У женщин среднего возраста получена комбинация нескольких ФР, таких как АГ, СД-2, курение, нарушение липидного обмена, ранний возраст наступления менопаузы, а также сниженный уровень эстрадиола. Кроме того, для женщин с ИМ немаловажными оказались такие психосоциальные ФР, как гиподинамия и тревожно-депрессив-

ные расстройства с характерными возрастными особенностями: для пациенток среднего возраста более значимым оказался повышенный уровень тревожности, а для пожилых женщин — наличие депрессии. Математические модели оценки ОШ развития нефатальных случаев ИМ для мужчин и женщин, разработанные с помощью современных статистических методов с учетом наиболее значимых ФР помогают рассчитать вероятность развития ИМ у каждого конкретного пациента. Применение этих моделей в терапевтической, кардиологической практике с учетом полученных гендерных и возрастных особенностей будет способствовать выявлению групп риска развития ИМ среди мужской и женской популяции пациентов, повышению эффективности профилактических мероприятий в целом и более углубленной работе с данными лицами по коррекции ФР.

Литература

- Oganov RG, Maslennikova GJa. Demographic trends in the Russian Federation: the contribution of circulatory diseases. Cardiovascular Therapy and Prevention 2012; 11(1): 5-10. Russian (Оганов Р.Г., Масленникова Г.Я. Демографические тенденции в Российской федерации: вклад болезней кровообращения. Кардиоваскулярная терапия и профилактика 2012; 11(1): 5-10).
- Oshhepkova EV, Efremova JuE, Karpov JuA. Morbidity and mortality from myocardial infarction in the Russian Federation in 2000-2011. Terapevticheskij arhiv 2013 (4):
 4-10. Russian (Ощепкова Е.В., Ефремова Ю.Е., Карпов Ю.А. Заболеваемость и смертность от инфаркта миокарда в Российской Федерации в 2000-2011rr. Терапевтический архив 2013 (4): 4-10).
- Katamadze NO, Bershtejn LL, Grishkin JuN. Diagnosis of subclinical atherosclerosis as an element of modern strategy stratification of cardiovascular risk. Cardiovascular Therapy and Prevention 2012; 11(2): 76-84. Russian (Катамадзе Н. О., Берштейн Л. Л., Гришкин Ю. Н. Диагностика субклинического атеросклероза как элемент современной стратегии стратификации сердечно-сосудистого риска. Кардиоваскулярная терапия и профилактика 2012: 11(2): 76-84).
- Berger JS, Jordan CO, Lloyd-Jones D, et al. Blumenthal Screening for Cardiovascular Risk in Asymptomatic Patients. JACC 2010; 55: 1169-77.
- The third universal definition of myocardial infarction. Russian Journal of Cardiology 2013; 2 (100): attachment 1. Russian (Третье универсальное определение инфаркта миокарда. Российский кардиологический журнал 2013; 2 (100): приложение 1).
- Javnaja IK. Effect of tobacco smoking on the vascular endothelium and microcirculation. Far East Medical J 2012 (2): 136-9. Russian (Явная И.К. Влияние курения табака на эндотелий сосудов и микроциркуляторное русло. Дальневосточный медицинский ж 2012 (2): 136-9).
- Ljusov VA, Volov NA. Myocardial infarction. Guidelines. Moscow. Izdatel'stvo LitTerra 2010; 240 р. Russian (Люсов В.А., Волов Н.А. Инфаркт миокарда. Руководство. Москва. Издательство ЛитТерра 2010; 240 с).

- Shames AB. Coronary heart disease in women. M.: Izdatel'stvo "Binom" 2013;
 176р. Russian (Шамес А.Б. Ишемическая болезнь сердца у женщин. М.: Издательство "Бином" 2013; 176с).
- Zhu J, Su X. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci 2014; 10(5): 855-62.
- Kakorin SV, Shashkova LS. Acute coronary syndrome in patients with impaired glucose metabolism. Russian Heart J 2012; 11(1): 8-12. Russian (Какорин С.В., Шашкова Л. С. Острый коронарный синдром у пациентов с нарушениями углеводного обмена. Сердце: журнал для практикующих врачей 2012: 11(1): 8-12).
- Golikova AA, Sergienko IV. Hyperglycemia as a factor in the risk of complications of myocardial infarction in patients with middle and old age. Klinicheskaja medicina 2014; 11 (92): 65-71. Russian (Голикова А.А., Сергиенко И. В. Гипергликемия как фактор риска осложненного инфаркта миокарда у больных пожилого и старческого возраста. Клиническая медицина 2014; 11 (92): 65-71).
- Sachdeva A, Cannon CP. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136.905 hospitalizations in Get With The Guidelines. Am Heart J 2009: 157(1): 111-7.
- Tkacheva ON, Kirsanova TV. Algorithms antiplatelet therapy in women. Cardiovascular Therapy and Prevention 2011; 10 (1): 110-9. Russian (Ткачева О. Н., Кирсанова Т. В. Алгоритмы антитромбоцитарной терапии у женщин. Кардиоваскулярная терапия и профилактика 2011; 10 (1): 110-9).
- Ryzhova TA. Risk factors and features of the course myocardial infarction in women elderly. Kardiologiia 2012; 12: 24-7. Russian (Рыжова Т.А. Факторы риска и особенности течения инфаркта миокарда у женщин пожилого и старческого возраста. Кардиология 2012; 12: 24-7).