

Роль сиртуина 6 в развитии раннего сосудистого старения у больных ишемической болезнью сердца молодого и среднего возраста (обзор литературы)

Останина Ю.О., Яхонтов Д.А., Уфилина Д.А.

ФГБОУ ВО "Новосибирский государственный медицинский университет" Минздрава России. Новосибирск, Россия

Ишемическая болезнь сердца (ИБС) остается лидирующей причиной инвалидизации и высокой смертности, в т.ч. среди лиц трудоспособного возраста. Одной из наиболее частых причин развития ИБС в молодом возрасте является синдром раннего сосудистого старения (СРСС). В аспекте этой проблемы, изучение регулирующей роли сиртуина 6 в развитии СРСС представляется актуальной. Целью обзора стал анализ данных литературы, касающихся возможности влияния сиртуина 6 на развитие СРСС у больных ИБС молодого и среднего возраста. Для этого был проведен поиск в международных базах данных PubMed, Scopus, Web of Science и Cochrane Library, а также в российских базах, включая eLIBRARY и Кибер Ленинка. Особое внимание уделялось работам, опубликованным за последние 15 лет, с акцентом на исследования, проведенные в течение последних 5 лет. На основании литературного анализа было показано, что сиртуин 6, эпигенетически модулируя транскрипцию генов и изменяя функцию белка, участвует в основных механизмах старения и связанных с ним сердечно-сосудистых заболеваний. Таким образом, изучение эффектов сиртуина 6 позволит получить более детальное понимание сложного механизма взаимодействия между ним, системными факторами и развитием сердечно-сосудистой патологии.

Ключевые слова: ишемическая болезнь сердца, сиртуин 6, синдром раннего сосудистого старения.

Отношения и деятельность: нет.

Поступила 25/02-2025 Рецензия получена 18/03-2025 Принята к публикации 01/05-2025

Для цитирования: Останина Ю.О., Яхонтов Д.А., Уфилина Д.А. Роль сиртуина 6 в развитии раннего сосудистого старения у больных ишемической болезнью сердца молодого и среднего возраста (обзор литературы). *Кардиоваскулярная терапия и профилактика*. 2025;24(8):4370. doi: 10.15829/1728-8800-2025-4370. EDN: OCWUBS

Role of sirtuin 6 in early vascular aging in young and middle-aged patients with coronary artery disease (literature review)

Ostanina Yu. O., Yakhontov D. A., Ufilina D. A. Novosibirsk State Medical University. Novosibirsk, Russia

Coronary artery disease (CAD) remains the leading cause of disability and high mortality, including among working-age people. One of the most common causes of CAD in young people is early vascular aging (EVA). Studying the regulatory role of sirtuin 6 in the development of EVA seems relevant. The purpose of the review was to analyze the literature data on the possible influence of sirtuin 6 on EVA in young and middle-aged patients with CAD. For this purpose, we searched data in international (PubMed, Scopus, Web of Science and Cochrane Library) and Russian (eLIBRARY and CyberLeninka) databases. Particular attention was paid to works published over the past 15 years, with an emphasis on studies conducted over the past 5 years. Literature analysis showed that sirtuin 6, epigenetically modulating gene transcription and changing protein function, is involved in the main mechanisms of aging and related cardiovascular diseases. Thus, studying the effects of sirtuin 6 will provide a more detailed understanding of complex interaction, systemic factors and the development of cardiovascular pathology. **Keywords:** coronary artery disease, sirtuin 6, early vascular aging.

Relationships and Activities: none.

Ostanina Yu. O. RCID: 0000-0002-4810-4795, Yakhontov D. A. ORCID: 0000-0003-4735-5178, Ufilina D. A.* ORCID: 0009-0005-7303-1865.

*Corresponding author: ufilina.dasha@mail.ru

Received: 25/02-2025

Revision Received: 18/03-2025

Accepted: 01/05-2025

For citation: Ostanina Yu. O., Yakhontov D. A., Ufilina D. A. Role of sirtuin 6 in early vascular aging in young and middle-aged patients with coronary artery disease (literature review). *Cardiovascular Therapy and Prevention*. 2025;24(8):4370. doi: 10.15829/1728-8800-2025-4370. EDN: OCWUBS

^{*}Автор, ответственный за переписку (Corresponding author): e-mail: ufilina.dasha@mail.ru

ГЛЖ — гипертрофия левого желудочка, ГМК — гладкомышечные клетки, ДНК — дезоксирибонуклеиновая кислота, ИБС — ишемическая болезнь сердца, ИЛ — интерлейкин, НАД — никотинамидадениндинуклеотид, РНК — рибонуклеиновая кислота, СД — сахарный диабет, СРСС — синдром раннего сосудистого старения, ССЗ — сердечно-сосудистые заболевания, ССР — сердечно-сосудистый риск, ФНО- α — фактор некроза опухоли-альфа, АМРК — AMP-activated protein kinase (аденозинмонофосфат-активируемая протеинкиназа), EVA — early vascular aging, МСР 1 — моноцитарный хемотаксический белок 1.

Ключевые моменты

Что известно о предмете исследования?

- Синдром раннего сосудистого старения (СРСС) является одной из ведущих причин развития ишемической болезни сердца у лиц молодого возраста.
- К основным характеристикам СРСС относятся повышенная сосудистая жесткость и укорочение длины теломер.

Что добавляют результаты исследования?

• Сиртуин 6, участвующий в регуляции воспаления, окислительного стресса, развитии атеросклероза и ряда других процессов, связанных со старением и возникновением сердечно-сосудистых заболеваний, может стать перспективной терапевтической мишенью при СРСС.

Key messages

What is already known about the subject?

- Early vascular aging (EVA) is one of the leading causes of coronary artery disease in young people.
- The main characteristics of EVA include increased vascular stiffness and short telomeres.

What might this study add?

 Sirtuin 6, which is involved in the regulation of inflammation, oxidative stress, atherogenesis and a number of other processes associated with aging and cardiovascular diseases, may become a promising therapeutic target for EVA.

Введение

Ишемическая болезнь сердца (ИБС) сохраняет лидирующие позиции в структуре сердечнососудистой заболеваемости и смертности как в России, так и во всем мире, в т.ч. у лиц молодого возраста. В этом патологическом процессе задействованы многочисленные сигнальные пути, функционирование которых определяется сигнальными молекулами.

Среди таких соединений следует остановиться на сиртуинах (silent information regulator, sirtuin) — семействе сигнальных белков, участвующих в регуляции обмена веществ. Сиртуин 6 принадлежит к семейству НАД⁺ (никотинамидадениндинуклеотид)-зависимых деацетилаз и играет важную роль в контроле гомеостаза организма и продолжительности жизни, модулируя стабильность генома, длину теломер, транскрипцию и репарацию дезоксирибонуклеиновой кислоты (ДНК); в то же время снижение его продукции (уровня) сопряжено с развитием ряда патологических состояний, включая хроническое низкоинтенсивное воспаление, ожирение и др. [1].

Показана ведущая роль сиртуинов и хемокинов в развитии эндотелиальной дисфункции, наблюдаемой при естественном и индуцированном старении. Ускоренное старение эндотелиоцитов сопровождалось более выраженным уменьшением синтеза ряда сиртуинов по сравнению с репликативным старением клеток этого типа, что может являться одним из патогенетических звеньев развития ассоциированных с возрастом сердечнососудистых заболеваний (ССЗ) [1]. В экспериментах на животных моделях сиртуин 6 продемонстри-

ровал свое влияние на регуляцию биологического гомеостаза, метаболизм глюкозы и липидов, воспаление и геномную стабильность, а также продолжительность жизни и развитие ряда заболеваний, в т.ч. и ССЗ [2]. Известно, что у лиц молодого возраста ИБС чаще манифестирует острым коронарным синдромом, при этом частота необструктивного поражения коронарных артерий (КА) выше, чем у лиц старших возрастных групп [3]. Одной из наиболее частых причин развития ИБС в молодом возрасте является синдром раннего сосудистого старения (СРСС), частота которого может достигать 73% всех случаев развития ИБС у молодых [4]. С учетом большой социальной и экономической значимости ИБС, особенно у лиц молодого возраста, изучение дополнительных механизмов ее раннего развития представляется весьма перспективным.

Цель — провести анализ данных литературы, касающихся роли сиртуина 6 в развитии раннего сосудистого старения у больных ИБС молодого и среднего возраста.

Методология исследования

В рамках анализа данных о возможности использования сиртуина 6 как маркера развития СРСС у больных ИБС молодого и среднего возраста был осуществлен многоэтапный подход к сбору и изучению как отечественных, так и зарубежных источников литературы. Поиск информации проводился в международных базах данных, таких как PubMed, Scopus, Web of Science и Cochrane Library, а также в российских базах, включая eLIBRARY и Кибер Ленинка, для учета всех актуальных и значимых публикаций. В ходе поиска использовались

ключевые слова и сочетания, такие как "сиртуин 6", "ишемическая болезнь сердца", "синдром раннего сосудистого старения" и их аналоги на английском языке. Особое внимание уделялось работам, опубликованным за последние 15 лет, с акцентом на исследования, проведенные в течение последних 5 лет, чтобы всесторонне представить имеющеюся информацию по данной проблеме.

Результаты

Сиртуин представляет собой НАД+-зависимый белок гистондеацетилазу, который оставался высоко консервативным в ходе эволюции от бактерий к млекопитающим [5]. Посредством ферментзависимых или независимых влияний сиртуины могут эпигенетически модулировать транскрипцию генов и изменять функцию белка, осуществляя посттрансляционную регуляцию. Иными словами, сиртуины изменяют уровень экспрессии и активность белков, в основном ферментов, и факторов транскрипции [6]. Среди сиртуинов сиртуин 6 известен благодаря его защитным свойствам в отношении развития атеросклероза, сердечнососудистого ремоделирования и сердечной недостаточности; он также был идентифицирован как возможная цель вмешательства при развитии ССЗ, что ставит его в центр клинического интереса [2].

CPCC

Синдром раннего сосудистого старения (СРСС, EVA — early vascular aging), предложенный шведским ученым Nilsson PM (2008), часто встречается у пациентов с артериальной гипертензией и повышенным бременем факторов сердечно-сосудистого риска (ССР). Одним из аспектов сосудистого старения является ригидность артерий, определяемая по увеличению скорости пульсовой волны или индекса аугментации и центрального давления. Известно, что процесс сосудистого старения начинается в раннем возрасте, а функция артерий и их старение могут быть запрограммированы еще внутриутробно или на них могут влиять неблагоприятные факторы роста в раннем детском возрасте. Это подтверждают результаты эпидемиологических наблюдений о наличии обратной связи между массой тела при рождении, скорректированной с учетом гестационного возраста, и повышением систолического артериального давления в детском, подростковом и взрослом возрасте, сопровождающимся повышением ССР [7].

В исследовании Ротарь О. П. и др. (2021) были показаны ассоциации факторов ССР с различными фенотипами сосудистого старения в российской популяции по данным исследования ЭССЕ-РФ (Эпидемиология сердечно-сосудистых заболеваний в регионах Российской Федерации). Распространенность фенотипа супернормального сосудистого старения (Super Normal Vascular Aging,

SUPERNOVA) составила 9,7%, фенотипа преждевременного сосудистого старения (EVA) — 18,8% и фенотипа нормального сосудистого старения (normal vascular aging) — 71,5%. У пациентов с фенотипом преждевременного (раннего) сосудистого старения чаще регистрировалась артериальная гипертензия, ожирение, дислипидемия и реже — высокая физическая нагрузка. При субанализе подгруппы молодых участников с фенотипом EVA выявлены относительно высокая распространенность сахарного диабета (СД), чрезмерного употребления алкоголя и курения [8].

По данным Недогоды С. В. и др. (2021) риск СРСС у пациентов с метаболическим синдромом увеличивался при наличии СД 2 типа, клинических признаков инсулинорезистентности, увеличении индекса НОМА (Homeostasis Model Assessment) и уровня С-реактивного белка (определенного высокочувствительным методом) с каждым годом увеличения паспортного возраста, а также с повышением диастолического артериального давления и уровня мочевой кислоты [9].

Таким образом, с учетом данных о влиянии уровня сиртуина 6 на стабильность генома, длину теломер, транскрипцию и репарацию ДНК, а также активность хронического низкоинтенсивного воспаления, наличие ожирения, состояние сосудистой стенки и др. [1], изучение влияние сиртуина 6 в аспекте СРСС представляется весьма перспективным.

Сиртуин 6

Сиртуины — семейство сигнальных белков, включающее в себя сиртуины 1-7. Они участвуют в поддержании целостности генома, реакции на повреждение ДНК и его восстановление, модулировании окислительного стресса, старения, воспаления и энергетического обмена благодаря их НАД-зависимой деацетилазной активности и эпигенетической функции подавления транскрипции генов [5]. Среди группы сиртуинов 1-7 существуют ядерные сиртуины, это сиртуины 1, 6 и 7, в то же время имеются данные о том, что сиртуин 2 и сиртуин 3 могут мигрировать между органеллами. Их функция состоит в определении начала старения клетки, кроме того, они играют решающую роль в регуляции воспаления и участвуют в развитии и прогрессировании атеросклероза [10].

Известно, что сиртуин 6 вовлечен в функционирование многих регуляторных путей старения и связан с развитием возраст-ассоциированных заболеваний, а также может выступать в качестве специфического биомаркера старения [11, 12]. Основные мишени сиртуина 6 в патогенезе развития ССЗ представлены на рисунке 1. Являясь эпигенетическим регулятором генов, связанных со старением, воспалением и метаболизмом, сиртуин 6 участвует в передаче сигналов о восстановлении

повреждений ДНК [13], а его способность восстанавливать двухцепочечные разрывы ДНК напрямую связана с продолжительностью жизни [14].

Старение в значительной степени связано с развитием теломерных нарушений и геномной нестабильностью [15], а истощение теломер и накопление коротких теломер происходит параллельно с процессами старения человека и, возможно, является ведущей причиной заболеваний, связанных со старением [16-19]. Между тем, влияние сиртуина 6 на репарацию ДНК и поддержание целостности генома сегодня активно изучается в аспекте старения и связанных с ним заболеваний [19, 20].

В исследовании Zhao Y, et al. (2021) изучался уровень сиртуина 6 в сыворотке крови в различных возрастных группах. Было показано, что его уровень был значительно ниже у лиц среднего и пожилого возраста по сравнению с молодыми [11]. Кроме того, в данном исследовании были продемонстрированы гендерные различия в уровне сиртуина 6 в сыворотке крови в зависимости от возраста. Так, у женщин молодого и среднего возраста наблюдались более высокие значения уровня сиртуин 6 по сравнению с мужчинами той же возрастной группы. Однако существенных различий в уровне сиртуина 6 между мужчинами различных возрастных групп обнаружено не было, а деацетилазная активность сиртуина 6 в сыворотке крови у мужчин с увеличением возраста постепенно снижалась. У женщин пожилого возраста также наблюдалось снижение деацетилазной активности сиртуина 6, в то время как значимой разницы между группами среднего и молодого возраста не было. Параллельная оценка активности теломеразы показала ее снижение с возрастом, но гендерных различий не наблюдалось [11].

Атеросклероз, старение и сиртуин 6

Окислительный стресс играет важную роль в развитии атеросклероза и старения. Белки сиртуины способствуют клеточной толерантности к окислительному стрессу, регулируя активность многих генов и связанных с ними сигнальных путей. Активируемая аденозинмонофосфатом (АМФ) протеинкиназа (AMP-activated protein kinase, AMPK) является основным регулятором метаболического гомеостаза и часто активируется в условиях ишемии и гипоксии. Семейство сиртуинов, в частности сиртуин 1 и 6 способствует экспрессии АМРК, тем самым повышая экспрессию генов, кодирующих ферменты антиоксидантной защиты — Мпзависимую изоформу супероксиддисмутазы и каталазу, тем самым, подавляя окислительный стресс [21, 22]. Тем не менее, необходимы дополнительные исследования для лучшего понимания взаимосвязи между сиртуином 6 и АМРК в условиях окислительного стресса с целью изучения потенциальных протективных возможностей сиртуина 6.

Рис. 1 Основные точки приложения сиртуина 6 с позиции развития ССЗ.

Старение имеет схожую патофизиологию с ожирением, а также связано с развитием хронического низкоинтенсивного воспаления в жировой ткани [23]. Убедительные клинические данные свидетельствуют об увеличении риска ожирения с возрастом [24, 25], что указывает на связь ожирения не только с метаболическими заболеваниями, присущими старению, но и со старением как таковым [26]. Тем не менее, молекулярный механизм, с помощью которого ожирение ускоряет процесс старения или наоборот, не совсем понятен. В ряде исследований показано, что экспрессия сиртуина 6 индуцируется в жировой ткани диетой с ограничением калорий или при потере веса [27], в то время как у лиц с избыточным весом его экспрессия подавляется [28]. В экспериментах на мышах с дефицитом сиртуина 6 наблюдался ряд изменений, связанных со старением, которые в конечном итоге привели к преждевременной смерти животных [29]. Напротив, сверхэкспрессия сиртуина 6 на фоне диеты с ограничением калорий у самцов трансгенных мышей значительно увеличивала продолжительность жизни по сравнению с мышами дикого типа, причем эффект сохранялся и у более старых животных [30].

Имеющиеся экспериментальные данные указывают на важность сиртуина 6 как регулятора воспаления жировой ткани, запускающего секрецию противовоспалительных адипоцитокинов и транскрипционную регуляцию созревания иммунных клеток. Не Y, et al. (2021) обнаружено, что повышение уровня фактора некроза опухоли альфа (ФНО-α) значительно снижало экспрессию сиртуина 6 и увеличивало экспрессию провоспалительных цитокинов, участвующих в развитии атеросклероза и дестабилизации атеросклеротической бляшки: моноцитарного хемотаксического белка 1 (МСР-1), интерлейкинов (ИЛ)-6 и ИЛ-1β. Однако, сверхэкспрессия сиртуина 6 ингибировала вызванную ФНО-α экспрессию МСР-1, ИЛ-6 и ИЛ-1β [31].

Показана защитная роль сиртуина 6 в развитии эндотелиальной дисфункции, сосудистого старения и атеросклероза. Антиатерогенный эффект в условиях окисления липопротеинов низкой плотности

он реализует путем подавления образования пенистых клеток через индукцию аутофагии макрофагов и обратного транспорта холестерина из макрофагов с участием липопротеинов высокой плотности, а также и снижения уровня микро-РНК-33 (рибонуклеиновой кислоты) [2].

В исследованиях *in vivo* установлено, что сверхэкспрессия сиртуина 6 снижает захват окисленных липопротеинов низкой плотности макрофагами, а уменьшение экспрессии сиртуина 6 усиливает его и увеличивает экспрессию скэвенджер-рецепторов макрофагов 1 [32, 33]. Кроме того, сиртуин 6 играет существенную роль в уменьшении повреждения миокарда, связанного с хронической ишемией и инфарктом, за счет влияния на окислительный стресс и апоптоз [2]. Тем не менее, молекулярные механизмы, лежащие в основе этих процессов, нуждаются в дальнейшем изучении.

Сиртуин 6 частично подавляет воспаление в стареющих гладкомышечных клетках (ГМК) сосудов, являющихся основным компонентом медиального слоя артерий и обуславливающих жесткость сосудистой стенки [34]. Известно, что стареющие ГМК сосудов способствуют развитию атеросклероза за счет усиления регуляции воспалительных цитокинов как части секреторного фенотипа, связанного со старением [35, 36]. Протективное влияние сиртуина 6 на ГМК в отношении старения и уменьшения проявлений атеросклероза показано Grootaert MOJ, et al. (2021). Сиртуин 6 оказывает противовоспалительное действие, подавляя экспрессию генов воспаления, зависимую от ядерного фактора-кВ, а снижение уровня сиртуина 6, наоборот, вызывает зависимое от ядерного фактора-кВ старение клеток линии HeLa. В исследовании на мышах сверхэкспрессия сиртуина 6 ассоциировалась со снижением уровня маркеров воспаления и старения, а также значительным образом влияла на площадь атеросклеротической бляшки и ее стабильность. При этом противовоспалительный эффект сиртуина 6 связан с влиянием на экспрессию ряда микро-РНК, ИЛ-1α, ИЛ-6 и МСР-1, что частично подавляет воспаление, задерживая старение ГМК сосудов [33].

Гипертрофия левого желудочка (ГЛЖ) и сиртуин 6

Описана связь сиртуина 6 и ГЛЖ. На животных моделях было показано, что снижение экспрессии сиртуина 6 сопровождалось развитием ГЛЖ и сердечной недостаточности, тогда как его повышенная экспрессия уменьшала выраженность ГЛЖ. Повышенная экспрессия сиртуина 6 в кардиомиоцитах снижала эффекты ангиотензина II, который, в свою очередь, играет ведущую роль в развитии ГЛЖ [37].

Система гемостаза и сиртуин 6

Нарушения системы гемостаза играют важную роль в развитии ИБС, в т.ч. ее острых форм, однако

роль сиртуина 6 в патогенезе артериального тромбоза остается мало изученной. В культивируемых эндотелиальных клетках аорты человека подавление экспрессии сиртуина 6 активировало экспрессию тканевого фактора — центрального триггера каскада свертывания. В экспериментах на животных моделях эндотелий-специфическая делеция в гене сиртуина 6 (4-6 экзоны) способствовала развитию артериального тромбоза [38].

Таким образом, сиртуин 6 оказывает влияние на множество биологических процессов, что позволяет рассматривать его в качестве значимой молекулы в развитии старения в целом, и EVA, в частности. Кроме того, активно обсуждается возможность использования сиртуина 6 в качестве потенциальной терапевтической мишени. Однако необходимо лучше понять терапевтическую роль специфичных для сиртуина 6 модуляторов (активаторов и ингибиторов) при ССЗ, метаболических заболеваниях, включая ожирение и СД. К настоящему времени идентифицировано несколько соединений, способных влиять на уровень экспрессии сиртуина 6; это, в частности ламин А, свободные жирные кислоты, кверцетин, лютеолин, флувастатин, трихостатин А, а также диета с дефицитом калорий, о которой уже упоминалось выше [37]. В то же время известно, что сверхэкспрессия сиртуина 6 может неоднозначно влиять на риск развития рака. С одной стороны, активно обсуждается роль сиртуина 6 в качестве супрессора ряда опухолей, а с другой — показана связь сверхэкспрессии сиртуина 6 с развитием как солидных, так и гематологических типов рака человека [39], что, безусловно, требует взвешенного подхода к потенциальной возможности его терапевтического применения. Вероятно, для повышения терапевтической эффективности модуляторов сиртуина 6 и минимизации их побочных эффектов должна быть изучена возможность использования тканеспецифических препаратов или генной терапии.

Заключение

Несмотря на большой объем публикаций об эффектах сиртуина 6 в аспекте развития старения и ССЗ, большинство из проанализированных работ носит экспериментальный характер. Необходимо аккумулировать больше данных об уровне сиртуина 6 у пациентов разных возрастных групп и при различной сердечно-сосудистой патологии, в т.ч. артериальной гипертензии, ИБС, сердечной недостаточности, нарушениях ритма. Это позволит получить более детальное понимание сложного механизма взаимодействия между сиртуином 6, системными факторами и развитием сердечно-сосудистой патологии. Кроме того, использование данного белка может иметь перспективы для разработки ин-

новационных терапевтических подходов, направленных на управление старением и заболеваниями сердечно-сосудистой системы.

Отношения и деятельность: все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Литература/References

- Savitskiy DV, Linkova NS, Kozhevnikova EO, et al. Sirtuins and chemokines as markers of replicative and induced senescence of human endotheliocytes. Acta Biomedica Scientifica. 2022;7(5-2):12-20. (In Russ.) Савицкий Д.В., Линькова Н.С., Кожевникова Е.О. и др. Сиртуины и хемокины — маркеры репликативного и индуцированного старения эндотелиоцитов человека. Acta Biomed Sci. 2022;7(5-2):12-20. doi:10.29413/ ABS.2022-7.5-2.2.
- Aitbaev KA, Murkamilov IT, Murkamilova ZA, et al. Epigenetic Mechanisms of Cardioprotection: Focus is on Activation of Sirtuins. The Russian Archives of Internal Medicine. 2021;11(6):424-32. (In Russ.) Айтбаев К. А., Муркамилов И. Т., Муркамилова Ж. А. и др. Эпигенетические механизмы кардиопротекции: в фокусе — активация сиртуинов. Архивъ внутренней медицины. 2021;11(6):424-32. doi:10.20514/2226-6704-2021-11-6-424-432.
- Safonova EA, Sukmanova IA. Myocardial infarction without obstructive coronary artery disease (MINOCA). Clinical Medicine. 2020;98(2):89-97. (In Russ.) Сафонова Е.А., Сукманова И.А. Инфаркт миокарда без обструктивного поражения коронарных артерий (MINOCA). Клиническая медицина. 2020;98(2):89-97. doi:10.30629/0023-2149-2020-98-2-89-97.
- 4. Yakhontov DA, Ostanina JO. Early vascular aging syndrome in young and middle age patients with hypertension and coronary artery disease. Medical alphabet. 2018;1(3):33-6. (In Russ.) Яхонтов Д.А., Останина Ю.О. Синдром раннего сосудистого старения у больных артериальной гипертонией в сочетании с ишемической болезнью сердца молодого и среднего возраста. Медицинский алфавит. 2018;1(3):33-6.
- Samoilova EM, Romanov SE, Chudakova DA, et al. Role of sirtuins in epigenetic regulation and aging control. Vavilovskii Zhurnal Genet Selektsii. 2024;28(2):215-27. (In Russ.) Самойлова Е.М., Романов С.Е., Чудакова Д.А. и др. Роль сиртуинов в эпигенетической регуляции и контроле старения. Вавиловский журнал генетики и селекции. 2024;28(2):215-27. doi:10.18699/ vjgb-24-26.
- 6. Aitbaev KA, Murkamilov IT, Murkamilova ZA, et al. Regulation of the Immune System in Aging: Focus on Epigenetic Mechanisms. The Russian Archives of Internal Medicine. 2022;12(1):35-44. (In Russ.) Айтбаев К. А., Муркамилов И. Т., Муркамилова Ж. А. и др. Регуляция иммунной системы при старении: в фокусе эпигенетические механизмы. Архивъ внутренней медицины. 2022;12(1):35-44. doi:10.20514/2226-6704-2022-12-1-35-44.
- Nilsson PM, Lurbe E, Laurent S. The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome. J Hypertens. 2008;26(6):1049-57. doi:10.1097/HJH.0b013e3282f82c3e.
- Rotar OP, Boiarinova MA, Tolkunova KM, et al. Vascular aging phenotypes in Russian population biological, social, and behavioral determinants. Cardiovascular Therapy and Prevention. 2021; 20(5):2970. (In Russ.) Ротарь О.П., Бояринова М.А., Толкунова К.М. и др. Фенотипы сосудистого старения в российской популяции биологические и социально-поведенческие детерминанты. Кардиоваскулярная терапия и профилактика. 2021;20(5):2970. doi:10.15829/1728-8800-2021-2970.
- Nedogoda SV, Salasyuk AS, Barykina IN, et al. Early vascular aging in patients with metabolic syndrome: features of the course and diagnosis. South Russian Journal of Therapeutic Practice. 2021; 2(1):50-62. (In Russ.) Недогода С.В., Саласюк А.С., Барыки-

- на И. Н. и др. Синдром раннего сосудистого старения у пациентов с метаболическим синдромом: особенности течения и диагностики. Южно-Российский журнал терапевтической практики. 2021;2(1):50-62. doi:10.21886/2712-8156-2021-2-1-50-62.
- Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci. 2022;24(1):728. doi:10.3390/ijms24010728.
- Zhao Y, Bai X, Jia X, et al. Age-related changes of human serum Sirtuin6 in adults. BMC Geriatr. 2021;21(1):452. doi:10.1186/ s12877-021-02399-0.
- Chepurnova NS, Yushchuk VN, Kozaeva OA, et al. Genetic predictors of vascular aging. Modern problems of science and education. 2022;(6-2):3. (In Russ.) Чепурнова Н.С., Ющук В.Н., Козаева О.А. и др. Генетические предикторы сосудистого старения. Современные проблемы науки и образования. 2022;(6-2):3. doi:10.17513/spno.32111.
- Onn L, Portillo M, Ilic S, et al. SIRT6 is a DNA double-strand break sensor. Elife. 2020;9:e51636. doi:10.7554/eLife.51636.
- Tian X, Firsanov D, Zhang Z, et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell. 2019;177:622-38.e22. doi:10.1016/j.cell.2019.03.043.
- Salakhov RR, Ponasenko AV. Telomere length and cardiovascular diseases. Complex Issues of Cardiovascular Diseases. 2018; 7(4S):101-7. (In Russ.) Салахов Р. Р., Понасенко А. В. Длина теломер и сердечно-сосудистые заболевания. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(4S):101-7. doi:10.17802/2306-1278-2018-7-4S-101-107.
- Ostanina JO, Yakhontov DA. Telomere length in patients with coronary heart disease of different age groups. Bulletin of modern clinical medicine. 2018;11(1):44-9. (In Russ.) Останина Ю.О., Яхонтов Д.А. Длина теломер у больных ишемической болезнью сердца разных возрастных групп. Вестник современной клинической медицины. 2018;11(1):44-9. doi:10.20969/VSKM.2018.11(1).44-49.
- 17. Asanov MA, Poddubnyak AO, Ponasenko AV. Relationship between telomere length and markers of inflammation in the pre- and postoperative period of patients with coronary artery disease. Complex Issues of Cardiovascular Diseases. 2024;13(3):28-36. (In Russ.) Асанов М.А., Поддубняк А.О., Понасенко А.В. Связь длины теломер с маркерами метаболизма и воспаления в пре- и послеоперационном периоде у пациентов с ишемической болезнью сердца. Комплексные проблемы сердечнососудистых заболеваний. 2024;13(3):28-36. doi:10.17802/2306-1278-2024-13-3-28-36.
- 18. Doroshchuk NA, Lankin VZ, Tikhaze AK, et al. Telomere length as a biomarker of the risk of cardiovascular complications in patients with coronary heart disease. Terapevticheskii Arkhiv. 2021; 93(1):20-4. (In Russ.) Дорощук Н.А., Ланкин В.З., Тихазе А.К. и др. Длина теломеров как биомаркер риска сердечно-сосудистых осложнений у больных ишемической болезнью сердца. Терапевтический архив. 2021;93(1):20-4. doi:10.26442/00403660. 2021.01.200588.
- Pukhalskaya AE, Kvetnoy IM, Linkova NS, et al. Sirtuins and aging. Advances in physiological sciences. 2022;53(1):16-27. (In Russ.) Пухальская А.Э., Кветной И.М., Линькова Н.С. и др. Сиртуины и старение. Успехи физиологических наук. 2022;53(1):16-27. doi:10.31857/S0301179821040056.

- 20. Aronov DM, Drapkina OM, Bubnova MG. Role of genetic factors (biology of telomeres) in cardiac rehabilitation. Cardiovascular Therapy and Prevention. 2022;21(6):3272. (In Russ.) Аронов Д. М., Драпкина О. М., Бубнова М. Г. Роль генетических факторов (биологии теломер хромосом) в кардиореабилитации. Кардиоваскулярная терапия и профилактика. 2022; 21(6):3272. doi:10.15829/1728-8800-2022-3272.
- Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7(1):402. doi:10.1038/ s41392-022-01257-8.
- Zenkov NK, Kozhin PM, Chechushkov AV, et al. Oxidative stress during aging. Advances in Gerontology. 2020;33:10-22. (In Russ.) Зенков Н. К., Кожин П. М., Чечушков А. В. и др. Окислительный стресс при старении. Успехи геронтологии. 2020;33:10-22. doi:10.34922/AE.2020.33.1.001.
- Metelskaya VA, Timofeev YS, Neshkova EA, et al. Inflammatory aging. Part 2. Are there diagnostic biomarkers available. Russian Journal of Preventive Medicine. 2025;28(1):89-95. (In Russ.) Метельская В.А., Тимофеев Ю.С., Нешкова Е.А. и др. Воспалительное старение. Часть 2. Есть ли доступные диагностические биомаркеры. Профилактическая медицина. 2025;28(1):89-95. doi:10.17116/profmed20252801189.
- Krivoshapova KE, Masenko VL, Bazdyrev ED, et al. Osteosarcopenic obesity in cardiovascular patients. Controversial and open issues. Cardiovascular Therapy and Prevention. 2021;20(6):2787. (In Russ.) Кривошапова К. Е., Масенко В. Л., Баздырев Е. Д. и др. Остеосаркопеническое ожирение у пациентов с сердечно-сосудистыми заболеваниями. Спорные и нерешенные вопросы. Кардиоваскулярная терапия и профилактика. 2021;20(6):2787. doi:10.15829/1728-8800-2021-2787.
- 25. Mamatov AU, Polupanov AG, Kakeev BA, et al. Gender and age factors associated with the development of obesity. The Scientific Heritage. 2021;(68-2(68):46-56. (In Russ.) Маматов А.У., Полупанов А.Г., Какеев Б.А. и др. Половые и возрастные факторы, ассоциированные с развитием ожирения. The Scientific Heritage. 2021;(68-2(68):46-56. doi:10.24412/9215-0365-2021-68-2-46-56.
- Santos AL, Sinha S. Obesity and aging: molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67:101268. doi:10.1016/j.arr.2021.101268.
- Kuang J, Zhang Y, Liu Q, et al. Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes. 2017;66:1159-71. doi:10.2337/db16-1225.
- Martinez-Jimenez V, Cortez-Espinosa N, Rodriguez-Varela E, et al. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity. Diabetes Metab Syndr. 2019;13:582-9. doi:10.1016/j. dsx.2018.11.011.

- Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315-29. doi:10.1016/j.cell.2005.11.044.
- Wei Z, Yang B, Wang H, et al. Caloric restriction, Sirtuins, and cardiovascular diseases. Chin Med J (Engl). 2024;137(8):921-35. doi:10.1097/CM9.0000000000003056.
- He Y, Yang G, Sun L, et al. SIRT6 inhibits inflammatory response through regulation of NRF2 in vascular endothelial cells. Int Immunopharmacol. 2021;99:107926. doi:10.1016/j.intimp.2021. 107926.
- Arsiwala T, Pahla J, van Tits LJ, et al. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis — Central role of macrophage scavenger receptor 1. J Mol Cell Cardiol. 2020;139: 24-32. doi:10.1016/j.yjmcc.2020.01.002.
- Finigan A, Figg NL, Uryga AK, et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res. 2021;128:474-91. doi:10.1161/CIRCRESAHA.120.318353.
- Shi J, Yang Y, Cheng A, et al. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319(3):H613-31. doi:10.1152/ajpheart.00220.2020.
- 35. Savitsky DV, Linkova NS, Kozhevnikova EO, et al. SASP of endothelium and vascular smooth muscle cells: role in the pathogenesis and therapy of atherosclerosis. Molecular medicine. 2022;(4):9-15. (In Russ.) Савицкий Д.В., Линькова Н.С., Кожевникова Е.О. и др. SASP эндотелия и гладкомышечных клеток сосудов: роль в патогенезе и терапии атеросклероза. Молекулярная медицина. 2022;(4):9-15. doi:10.29296/24999490-2022-04-02.
- 36. Sinitsky MY, Sinitskaya AN, Shishkova DV, et al. Gene expression of proinflammatory cytokines in human coronary artery smooth muscle cells exposed to alkylating mutagen. Complex Issues of Cardiovascular Diseases. 2022;11(4):158-66. (In Russ.) Синицкий М.Ю., Синицкая А.В., Шишкова Д.К. и др. Оценка экспрессии провоспалительных цитокинов в гладкомышечных клетках коронарной артерии, экспонированных мутагеном алкилирующего механизма действия. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(4):158-66. doi:10.17802/2306-1278-2022-11-4-158-166.
- Raj S, Dsouza LA, Singh SP, et al. Sirt6 deacetylase: a potential key regulator in the prevention of obesity, diabetes and neurodegenerative disease. Front Pharmacol. 2020;11:598326. doi:10. 3389/fphar.2020.598326.
- Gaul DS, Calatayud N, Pahla J, et al. Endothelial SIRT6 deficiency promotes arterial thrombosis in mice. J Mol Cell Cardiol. 2023;174:56-62. doi:10.1016/j.yjmcc.2022.11.005.
- Fiorentino F, Carafa V, Favale G, et al. The two-faced role of SIRT6 in cancer. Cancers (Basel) 2021;13:1156. doi:10.3390/ cancers13051156.