ISSN 1728-8800 (Print) ISSN 2619-0125 (Online)







# Снижение массы тела как предиктор смерти от сердечно-сосудистых заболеваний и смерти от всех причин: 34-летнее когортное проспективное наблюдение

Долгалёв И.В., Саприна Т.В., Иванова А.Ю.

ФГБОУ ВО "Сибирский государственный медицинский университет" Минздрава России. Томск, Россия

**Цель.** Изучить влияние направленности динамики массы тела (МТ) как фактора, определяющего риск) смерти от сердечнососудистых заболеваний и от всех причин в 34-летнем проспективном наблюдении когорты неорганизованной популяции г. Томска. **Материал и методы.** Выполнено 34-летнее проспективное исследование. В когорту вошли 1546 человек в возрасте 20-59 лет. 1988-1991гг — измерение антропометрических параметров, расчет индекса МТ. 2002-2005гг — повторное обследование когорты, оценка МТ. 2022г — изучение влияния направленности динамики МТ на риск смерти от сердечно-сосудистых заболеваний (ССЗ) и от всех причин.

Результаты. Предшествующее снижение МТ более чем на 5% сопровождается повышением риска смерти от всех причин в 1,6 раза в сравнении с лицами, чья МТ оставалась стабильной, и в 2,3 раза выше по сравнению с теми, чья МТ за время наблюдения увеличилась. Риск смерти от ССЗ в случае снижения МТ выше в 1,7 и 3 раза, соответственно. Наилучшая 17-летняя выживаемость установлена среди лиц, у которых произошло увеличение МТ более чем на 5%.

**Заключение.** Снижение МТ более чем на 5% является независимым предиктором смерти от ССЗ и от всех причин. При оценке риска смерти от ССЗ и от всех причин важно учитывать не только

текущий показатель МТ, но и предшествующую направленность её динамики.

**Ключевые слова:** индекс массы тела, динамика массы тела, масса тела, парадокс ожирения, проспективное исследование, риск смерти, сердечно-сосудистые заболевания, снижение массы тела.

Отношения и деятельность: нет.

Поступила 31/03-2025 Рецензия получена 19/04-2024 Принята к публикации 10/07-2025





**Для цитирования:** Долгалёв И.В., Саприна Т.В., Иванова А.Ю. Снижение массы тела как предиктор смерти от сердечно-сосудистых заболеваний и смерти от всех причин: 34-летнее когортное проспективное наблюдение. *Кардиоваскулярная терапия и профилактика*. 2025;24(8):4405. doi: 10.15829/1728-8800-2025-4405. EDN: MKUHOD

# Weight loss as a predictor of cardiovascular and all-cause death: a 34-year prospective cohort follow-up

Dolgalev I.V., Saprina T.V., Ivanova A.Yu. Siberian State Medical University. Tomsk, Russia

**Aim.** To study the influence of body weight changes as a factor determining the risk of cardiovascular and all-cause death in a 34-year prospective follow-up of a Tomsk population cohort.

**Material and methods.** This 34-year prospective study included 1546 people aged 20-59 years. In 1988-1991, anthropometric measurement and calculation of body mass index were performed, while in 2002-2005 — re-examination of the cohort with body weight assessment. In 2022, we studied the effect of body weight changes on cardiovascular and all-cause mortality.

**Results.** Prior body weight decreases by more than 5% is accompanied by an increase in all-cause death risk by 1,6 times compared to individuals with stable weight, and 2,3 times higher compared to those with body weight increased during the follow-up period. Cardiovascular death risk in the case of body weight decrease is 1,7 and 3 times higher, respectively. The best 17-year survival was established among individuals with an increase who had an increase in BW by more than 5%.

**Conclusion.** A decrease in body weight by more than 5% is an independent predictor of cardiovascular and all-cause death. When assessing the cardiovascular and all-cause death risks, not only the current body weight should be taken into account, but also the previous direction of its changes.

**Keywords:** body mass index, body mass changes, body weight, obesity paradox, prospective study, death risk, cardiovascular disease, weight loss.

#### Relationships and Activities: none.

Dolgalev I. V. ORCID: 0000-0003-2658-0181, Saprina T. V. ORCID: 0000-0001-9011-8720, Ivanova A. Yu.\* ORCID: 0000-0003-4140-9067.

\*Corresponding author: a181288@yandex.ru

[Долгалёв И.В. — д.м.н., профессор, зав. кафедрой факультетской терапии с курсами эндокринологии и клинической фармакологии, ORCID: 0000-0003-2658-0181, Саприна Т.В. — д.м.н., доцент, профессор кафедры факультетской терапии с курсами эндокринологии и клинической фармакологии, ORCID: 0000-0001-9011-8720, Иванова А.Ю.\* — к.м.н., доцент кафедры факультетской терапии с курсами эндокринологии и клинической фармакологии, ORCID: 0000-0003-4140-9067].

<sup>\*</sup>Автор, ответственный за переписку (Corresponding author): e-mail: a181288@yandex.ru

Received: 31/03-2025 Revision Received: 19/04-2024 Accepted: 10/07-2025

tive cohort follow-up. *Cardiovascular Therapy and Prevention*. 2025; 24(8):4405. doi: 10.15829/1728-8800-2025-4405. EDN: MKUHOD

**For citation:** Dolgalev I.V., Saprina T.V., Ivanova A.Yu. Weight loss as a predictor of cardiovascular and all-cause death: a 34-year prospec-

ИМТ — индекс массы тела, ИзбМТ — избыточная масса тела, МТ — масса тела, СД — сахарный диабет, ССЗ — сердечно-сосудистые заболевания, ФР — фактор риска, RR — relative risk (относительный риск), HR — hazard ratio (отношение рисков).

#### Ключевые моменты

#### Что известно о предмете исследования?

Повышенная масса тела (МТ) — важный модифицируемый фактор риска кардиоваскулярной патологии и смерти от сердечно-сосудистых заболеваний и от всех причин.

#### Что добавляют результаты исследования?

- Предшествующее непреднамеренное снижение МТ более, чем на 5% сопровождается значительным повышением риска смерти от сердечно-сосудистых заболеваний и от всех причин, а увеличение МТ на >5% улучшением показателей выживаемости.
- При оценке риска смерти важно учитывать не только текущий показатель МТ, но и предшествующую направленность динамики МТ.

## **Key messages**

# What is already known about the subject?

 Increased body weight is an important modifiable risk factor for cardiovascular disease and cardiovascular and all-cause death.

#### What might this study add?

- Previous unintentional decrease in body weight by more than 5% is associated with a significant increase in the risk of cardiovascular and all-cause death, while an increase by >5% is associated with improved survival.
- When assessing the cardiovascular and all-cause death risks, not only the current body weight should be taken into account, but also the previous direction of its changes.

## Введение

Повышенная масса тела (МТ) до степени избыточной и ожирения — один из важнейших модифицируемых факторов риска (ФР) кардиоваскулярной патологии и смерти от сердечнососудистых заболеваний (ССЗ) и от всех причин, который становится причиной более 1,3 млн случаев смерти/год. Наряду с этим распространенность избыточной МТ (ИзбМТ) и ожирения продолжает возрастать с каждым годом: в 2022г ИзбМТ имели 43% взрослого населения, ожирение — 16%, что более чем в два раза превышает показатели 1990г.2 Вместе с тем, в последние десятилетия в ряде исследований описана обратная зависимость между индексом МТ (ИМТ), его динамикой и риском развития неблагоприятных исходов у лиц, имеющих хронические заболевания, а в научной литературе прочно обосновался термин "парадокс ожирения" [1-5]. Однако в другом современном исследовании эта закономерность не нашла своего подтверждения [6].

Цель исследования — изучить влияние направленности динамики МТ как фактора, определяющего риск смерти от ССЗ и от всех причин в 34-летнем проспективном наблюдении когорты неорганизованной популяции города Томска.

#### Материал и методы

В работе представлены результаты 34-летнего проспективного когортного исследования "Динамика и прогностическая значимость факторов риска сердечнососудистых заболеваний", выполненного в неорганизованной популяции г. Томска (1988-2022гг) в соответствии с принципами Хельсинкской декларации [7, 8].

Исследование проведено в 3 этапа. На I этапе (1988-1991гг) по спискам квартир жилищно-эксплуатационных управлений с использованием таблицы случайных чисел произведена выборка. Обследовано 1546 человек (916 женщин и 630 мужчин) в возрасте 20-59 лет. Изучена распространенность конвенционных ФР, в т.ч. оценивались антропометрические параметры. Измерение МТ проводилось на медицинских весах с точностью до 0,1 кг. Затем последовал 17-летний период наблюдения. Со стороны исследователей какие-либо воздействия на когорту не оказывались.

На II этапе (2002-2005гг) проведено повторное измерение МТ. В зависимости от выявленной направленности динамики МТ для последующего наблюдения выделены 3 группы. В первую группу вошли мужчины и женщины, МТ которых за предшествующий период

https://www.who.int/europe/ru/news/item/03-05-2022-obesity-causes-cancer-and-is-major-determinant-of-disability-and-death-warns-new-who-report.

https://www.who.int/ru/news-room/fact-sheets/detail/obesity-andoverweight.

Таблица 1 RR смерти от всех причин в зависимости от направленности динамики МТ

| Возраст, годы | Динамика МТ   | N   | 0        | бщая см | ертность | χ²    | p       | RR   | 95% ДИ    |
|---------------|---------------|-----|----------|---------|----------|-------|---------|------|-----------|
|               |               |     | 1000 ЧЛН | n       | %        |       |         |      |           |
| 37-76         | + >5%         | 465 | 6,22     | 91      | 19,6     |       |         | 1    |           |
|               | - >5%         | 199 | 15,12    | 88      | 44,2     | 43,01 | < 0,001 | 2,26 | 1,78-2,88 |
|               | + >5%         | 465 | 6,22     | 91      | 19,6     |       |         | 1    |           |
|               | не изменилась | 425 | 8,84     | 116     | 27,3     | 7,42  | < 0,01  | 1,40 | 1,10-1,78 |
|               | не изменилась | 425 | 8,84     | 116     | 27,3     |       |         | 1    |           |
|               | - >5%         | 199 | 15,12    | 88      | 44,2     | 17,65 | < 0,001 | 1,62 | 1,30-2,02 |
| 37-56         | + >5%         | 331 | 4,16     | 44      | 13,3     |       |         | 1    |           |
|               | - >5%         | 78  | 9,26     | 22      | 28,2     | 10,37 | < 0,01  | 2,12 | 1,36-3,32 |
|               | + >5%         | 331 | 4,16     | 44      | 13,3     |       |         | 1    |           |
|               | не изменилась | 229 | 3,67     | 27      | 11,8     | 0,28  | 0,599   | 0,89 | 0,57-1,39 |
|               | не изменилась | 229 | 3,67     | 27      | 11,8     |       |         | 1    |           |
|               | - >5%         | 78  | 9,26     | 22      | 28,2     | 11,69 | < 0,001 | 2,39 | 1,45-3,95 |
| 57-76         | + >5%         | 134 | 11,61    | 47      | 35,1     |       |         | 1    |           |
|               | - >5%         | 121 | 19,17    | 66      | 54,5     | 9,77  | < 0,01  | 1,56 | 1,17-2,06 |
|               | + >5%         | 134 | 11,61    | 47      | 35,1     |       |         | 1    |           |
|               | не изменилась | 196 | 15,46    | 89      | 45,4     | 3,51  | 0,061   | 1,29 | 0,98-1,71 |
|               | не изменилась | 196 | 15,46    | 89      | 45,4     |       |         | 1    |           |
|               | - >5%         | 121 | 19,17    | 66      | 54,5     | 2,50  | 0,114   | 1,20 | 0,96-1,50 |

Примечание: ДИ — доверительный интервал, MT — масса тела,  $4\Pi H$  — человеко-лет наблюдения, N — общее количество лиц, n — количество умерших, RR — relative risk (относительный риск). +>5% — увеличение MT на >5%, ->5% — снижение MT на >5%.

наблюдения снизилась более чем на 5%; во вторую группу — лица со стабильной МТ ( $\pm 5\%$  от исходной); в третью группу — лица, МТ которых увеличилась более чем на 5%. Возрастной диапазон наблюдаемых мужчин и женщин составил 37-76 лет.

На III этапе исследования изучались показатели общей и сердечно-сосудистой смертности. Первые данные о влиянии направленности динамики МТ на риск смерти получены в 2015г, через 10 лет после оценки направленности её динамики [9]. Затем в 2022г проанализирован более продолжительный 17-летний период наблюдения за когортой. За 17 лет наблюдения (2005-2022гг) выявлено 295 случаев смерти, из них 145 (49,2%) от сердечнососудистых причин. Жизненный статус установлен для 1409 наблюдаемых лиц, доля утери составила 8,86%. Для респондентов, выбывших из исследования, определяли эпидемиологическую дату дожития.

Статистический анализ осуществлялся в программе Statistica 13.5. Относительный риск (relative risk, RR) смерти рассчитывался с помощью программы KRelRisk. Различия между сравниваемыми группами считали статистически достоверными при значениях р<0,05. С целью оценки независимого влияния направленности динамики МТ проведен многофакторный анализ, в который включены: артериальная гипертензия (артериальное давление ≥140/90 мм рт.ст.), ишемическая болезнь сердца (ИБС) по эпидемиологическим критериям, ИзбМТ (ИМТ  $\geq 25 \text{ кг/м}^2$ , но  $\leq 30 \text{ кг/м}^2$ ), ожирение (ИМТ  $\geq 30 \text{ кг/m}^2$ ) м<sup>2</sup>), гиперхолестеринемия (уровень холестерина (XC) ≥5,0 ммоль/л), гипоальфахолестеринемия (уровень ХС липопротеинов высокой плотности ≤1,0 ммоль/л для мужчин и ≤1,2 ммоль/л для женщин), гипертриглицеридемия (уровень триглицеридов ≥1,7 ммоль/л), курение, потребление алкоголя, возрастная группа (20-39 и 40-59 лет) и пол. Курящими считали ежедневно выкуривающих, по крайней мере, 1 сигарету на протяжении не <1 года на момент обследования, а также тех, чей стаж отказа от курения был не >1 года; отказавшимися от курения — лиц, у которых стаж отказа от курения составил >1 года. При изучении потребления алкоголя выделены следующие группы: не употребляющие алкоголь, употребляющие алкоголь редко (<1 раз/мес.), умеренно (<1 раз/нед., но >1 раза/мес.) и часто (несколько раз/нед.). Многофакторный анализ проводился путем построения модели пропорциональных интенсивностей Кокса с расчётом отношения рисков (НR — hazard ratio). Анализ выживаемости в зависимости от направленности изменения МТ проводился с использованием метода Каплана-Майера на основе показателей общей смертности, достоверность различий оценивалась с помощью логарифмического рангового теста.

## Результаты

Ранее нами представлены результаты промежуточного анализа, выполненного через 10 лет наблюдения после повторного обследования когорты [9]. 17-летнее проспективное исследование подтвердило основные положения, касающиеся влияния направленности динамики МТ на формирование риска смерти, что свидетельствует о её большой значимости как одного из факторов, определяющих риск преждевременной смерти. По итогам 34-летнего проспективного исследования показано, что самый высокий риск смерти имели люди, у которых в период между I и II этапом наблюдения (1988-2005гг) МТ снизилась более чем на 5%. Среди лиц этой группы RR смерти от всех причин оказался в 1,62 раза выше (p<0,001) по сравнению с теми, у кого МТ оставалась без изменения и теми

RR смерти от ССЗ в зависимости от направленности динамики МТ

Таблица 2

| Возраст, годы | Динамика МТ   | N   | Смертность от ССЗ |    |      | $\chi^2$ | p      | RR   | 95% ДИ    |
|---------------|---------------|-----|-------------------|----|------|----------|--------|------|-----------|
|               |               |     | 1000 ЧЛН          | n  | %    |          |        |      |           |
| 37-76         | + >5%         | 465 | 2,60              | 38 | 8,2  |          |        | 1    |           |
|               | - >5%         | 199 | 8,25              | 48 | 24,1 | 31,44    | <0,001 | 2,95 | 2,00-4,37 |
|               | + >5%         | 465 | 2,60              | 38 | 8,2  |          |        | 1    |           |
|               | не изменилась | 425 | 4,50              | 59 | 13,9 | 7,46     | <0,01  | 1,70 | 1,16-2,50 |
|               | не изменилась | 425 | 4,50              | 59 | 13,9 |          |        | 1    |           |
|               | - >5%         | 199 | 8,25              | 48 | 24,1 | 10,00    | <0,01  | 1,74 | 1,24-2,45 |
| 37-56         | + >5%         | 331 | 1,23              | 13 | 3,9  |          |        | 1    |           |
|               | - >5%         | 78  | 3,37              | 8  | 10,3 | 5,19     | <0,05  | 2,61 | 1,12-6,08 |
|               | + >5%         | 331 | 1,23              | 13 | 3,9  |          |        | 1    |           |
|               | не изменилась | 229 | 0,95              | 7  | 3,1  | 0,30     | 0,585  | 0,78 | 0,32-1,92 |
|               | не изменилась | 229 | 0,95              | 7  | 3,1  |          |        | 1    |           |
|               | - >5%         | 78  | 3,37              | 8  | 10,3 | 6,49     | <0,05  | 3,36 | 1,26-8,95 |
| 57-76         | + >5%         | 134 | 6,18              | 25 | 18,7 |          |        | 1    |           |
|               | - >5%         | 121 | 11,62             | 40 | 33,1 | 6,94     | <0,01  | 1,77 | 1,15-2,74 |
|               | +>5%          | 134 | 6,18              | 25 | 18,7 |          |        | 1    |           |
|               | не изменилась | 196 | 9,04              | 52 | 26,5 | 2,76     | 0,097  | 1,42 | 0,93-2,17 |
|               | не изменилась | 196 | 9,04              | 52 | 26,5 |          |        | 1    |           |
|               | - >5%         | 121 | 11,62             | 40 | 33,1 | 1,55     | 0,214  | 1,25 | 0,88-1,76 |

Примечание: ДИ — доверительный интервал, MT — масса тела, CC3 — сердечно-сосудистые заболевания, 4DH — человеко-лет наблюдения, N — общее количество лиц, n — количество умерших, RR — relative risk (относительный риск). +>5% — увеличение MT на >5%, ->5% — снижение MT на >5%.

Таблица 3 RR смерти среди мужчин и женщин от всех причин в зависимости от направленности динамики МТ

| Пол     | Динамика МТ   | N   | Смертность от ССЗ |    |      | $\chi^2$ | p      | RR   | 95% ДИ    |
|---------|---------------|-----|-------------------|----|------|----------|--------|------|-----------|
|         |               |     | 1000 ЧЛН          | n  | %    |          |        |      |           |
| Мужчины | + >5%         | 148 | 8,12              | 37 | 25,0 |          |        | 1    |           |
|         | - >5%         | 82  | 22,67             | 51 | 62,2 | 30,90    | <0,001 | 2,49 | 1,80-3,45 |
|         | + >5%         | 148 | 8,12              | 37 | 25,0 | ,        |        | 1    |           |
|         | не изменилась | 154 | 13,47             | 61 | 39,6 | 7,35     | <0,01  | 1,58 | 1,13-2,23 |
|         | не изменилась | 154 | 13,47             | 61 | 39,6 |          |        | 1    |           |
|         | - >5%         | 82  | 22,67             | 51 | 62,2 | 10,95    | <0,001 | 1,57 | 1,21-2,03 |
| Женщины | + >5%         | 317 | 5,36              | 54 | 17,0 |          |        | 1    |           |
|         | - >5%         | 117 | 10,36             | 37 | 31,6 | 10,98    | <0,001 | 1,86 | 1,29-2,66 |
|         | + >5%         | 317 | 5,36              | 54 | 17,0 |          |        | 1    |           |
|         | не изменилась | 271 | 6,41              | 55 | 20,3 | 1,03     | 0,311  | 1,19 | 0,85-1,67 |
|         | не изменилась | 271 | 6,41              | 55 | 20,3 |          |        | 1    |           |
|         | - >5%         | 117 | 10,36             | 37 | 31,6 | 5,80     | < 0,05 | 1,56 | 1,09-2,22 |

Примечание: ДИ — доверительный интервал, МТ — масса тела, ЧЛН — человеко-лет наблюдения, N — общее количество лиц, n — количество умерших, RR — relative risk (относительный риск). + >5% — увеличение МТ на >5%, - >5% — снижение МТ на >5%.

людьми, среди которых отмечено увеличение МТ (RR 2,26; p<0,001) (таблица 1). В возрастной группе 37-56 лет наблюдались те же тенденции, что и в когорте в целом. Среди лиц 57-76 лет статистически значимыми были различия только между подгруппами, в которых произошло снижение МТ, в сравнении с лицами, у которых МТ повысилась (RR 1,56; p<0,01).

Среди лиц с неизменившейся MT RR смерти от всех причин был больше в 1,4 раза (p<0,01), чем среди тех, у кого отмечено повышение MT более чем на 5%.

Изучение RR смерти от ССЗ в 34-летнем проспективном исследовании среди людей с различной направленностью динамики выявило те же закономерности, что и при анализе RR смерти от всех причин (таблица 2). Так, риск смерти от ССЗ среди людей, у которых MT снизилась, был больше в 3,0 раза (p<0,001) по сравнению с лицами, у которых наблюдалось предшествующее повышение MT, и больше в 1,7 раза (p<0,01), чем у людей с неизменившейся MT. Среди людей, MT которых между I и II этапами наблюдения не изменилась, риск смерти от СЗЗ был больше в 1,7 раза

**Таблица 4** RR смерти среди мужчин и женщин от ССЗ в зависимости от направленности динамики МТ

|         |               | -   |                   |     |      | _        |        |      |           |
|---------|---------------|-----|-------------------|-----|------|----------|--------|------|-----------|
| Пол     | Динамика МТ   | N   | Смертность от ССЗ |     |      | $\chi^2$ | р      | RR   | 95% ДИ    |
|         |               |     | 1000 ЧЛ           | H n | %    |          |        |      |           |
| Мужчины | + >5%         | 148 | 3,95              | 18  | 12,2 |          |        | 1    |           |
|         | - >5%         | 82  | 12,45             | 28  | 34,1 | 15,94    | <0,001 | 2,81 | 1,76-4,76 |
|         | + >5%         | 148 | 3,95              | 18  | 12,2 |          |        | 1    |           |
|         | не изменилась | 154 | 6,84              | 31  | 20,1 | 3,52     | 0,060  | 1,66 | 0,97-2,83 |
|         | не изменилась | 154 | 6,84              | 31  | 20,1 |          |        | 1    |           |
|         | - >5%         | 82  | 12,45             | 28  | 34,1 | 5,61     | <0,05  | 1,70 | 1,10-2,62 |
| Женщины | + >5%         | 317 | 1,99              | 20  | 6,3  |          |        | 1    |           |
|         | - >5%         | 117 | 5,88              | 21  | 17,9 | 13,53    | <0,001 | 2,85 | 1,60-5,05 |
|         | +>5%          | 317 | 1,99              | 20  | 6,3  |          |        | 1    |           |
|         | не изменилась | 271 | 3,26              | 28  | 10,3 | 3,15     | 0,076  | 1,64 | 0,94-2,84 |
|         | не изменилась | 271 | 3,26              | 28  | 10,3 |          |        | 1    |           |
|         | - >5%         | 117 | 5,88              | 21  | 17,9 | 4,30     | <0,05  | 1,74 | 1,03-2,93 |

Примечание: ДИ — доверительный интервал, MT — масса тела, CC3 — сердечно-сосудистые заболевания, 4DH — человеко-лет наблюдения, N — общее количество лиц, n — количество умерших, RR — relative risk (относительный риск). +>5% — увеличение MT на >5%, ->5% — снижение MT на >5%.

 Таблица 5

 Многофакторный анализ риска смерти от ССЗ и от всех причин

| ФР                     |                   | I      | Риск смерт | ги от всех причин |        | Риск смерти от ССЗ |           |  |  |
|------------------------|-------------------|--------|------------|-------------------|--------|--------------------|-----------|--|--|
|                        |                   | p      | HR         | 95% ДИ            | p      | HR                 | 95% ДИ    |  |  |
| Возрастная группа      | Возрастная группа |        | 2,86       | 2,12-3,85         | <0,001 | 4,67               | 2,90-7,50 |  |  |
| Пол                    |                   | 0,102  | 1,32       | 0,95-1,85         | 0,197  | 1,41               | 0,87-2,28 |  |  |
| ΑΓ                     |                   | 0,008  | 1,49       | 1,11-1,99         | 0,001  | 1,99               | 1,33-2,98 |  |  |
| ИБС                    |                   | 0,068  | 1,39       | 0,98-1,99         | 0,390  | 1,25               | 0,75-2,08 |  |  |
| ИзбМТ (25,0≤ ИМТ <30,0 | 0)                | 0,116  | 1,32       | 0,94-1,85         | 0,429  | 1,22               | 0,75-3,04 |  |  |
| Ожирение (ИМТ ≥30,0)   | <0,001            | 2,04   | 1,40-2,99  | 0,052             | 1,72   | 0,996-2,99         |           |  |  |
| Гиперхолестеринемия    | 0,829             | 0,97   | 0,70-1,33  | 0,732             | 1,09   | 0,67-1,76          |           |  |  |
| Гипоальфахолестеринеми | Я                 | 0,769  | 0,95       | 0,66-1,36         | 0,972  | 1,01               | 0,60-1,70 |  |  |
| Гипертриглицеридемия   |                   | 0,842  | 1,04       | 0,73-1,46         | 0,753  | 0,93               | 0,57-1,50 |  |  |
| Курение                | Курит             | <0,001 | 2,24       | 1,53-3,29         | 0,003  | 2,30               | 1,32-4,00 |  |  |
|                        | Отказ             | <0,001 | 2,33       | 1,55-3,49         | 0,001  | 2,70               | 1,53-4,76 |  |  |
| ПА                     | Редко             | 0,764  | 0,95       | 0,66-1,35         | 0,553  | 0,86               | 0,52-1,43 |  |  |
|                        | Умеренно          | 0,479  | 1,17       | 0,76-1,80         | 0,755  | 1,10               | 0,60-2,05 |  |  |
|                        | Часто             | 0,081  | 2,21       | 0,91-5,39         | 0,077  | 2,79               | 0,90-8,69 |  |  |
| Изменение MT           | Увеличилась       | 0,327  | 1,18       | 0,85-1,62         | 0,970  | 0,99               | 0,62-1,59 |  |  |
|                        | Снизилась         | <0,001 | 1,96       | 1,43-2,70         | 0,002  | 1,96               | 1,27-3,04 |  |  |

Примечание:  $A\Gamma$  — артериальная гипертензия, ДИ — доверительный интервал, UBC — ишемическая болезнь сердца, UBC — избыточная масса тела, UBC — индекс массы тела, UBC — масса тела, UBC — индекс массы тела, UBC — индекс мас

(p<0,01), по сравнению с теми, у кого отмечено возрастание МТ. В группах, распределённых по возрасту, наблюдались те же тенденции, что и в когорте в целом.

В анализе, проведенном с учетом пола, как и в общей когорте, предшествующее снижение веса через 17 лет наблюдения ассоциировалось с более высоким RR смерти от ССЗ и от всех причин (таблицы 3 и 4). Среди мужчин снижение МТ по сравнению со случаями её повышения увеличивало RR смерти от всех причин в 2,5 раза (p<0,001), от ССЗ — в 2,8 раза (p<0,001); среди женщин — в 1,9 (p<0,01) и в 2,9 раз (p<0,01), соответственно.

Среди людей, у которых вес снизился сравнительно с теми, у кого МТ оставалась неизменной, наблюдалось увеличение вероятности смерти от всех причин как среди мужчин (RR 1,57; p<0,001), так и среди женщин (RR 1,56; p<0,05). Среди мужчин с неизменившейся МТ RR смерти от всех причин был также больше в 1,6 раза (p<0,01) по сравнению с теми, у кого вес тела увеличился.

Результаты многофакторного анализа, в который были включены основные конвенционные ФР, показали, что предшествующее снижение МТ на >5% является независимым прогностически неблагоприятным предиктором, повышающим риск

смерти от ССЗ и от всех причин в  $\sim$ 2 раза (наряду с артериальной гипертензией, курением, ожирением и возрастом) (таблица 5).

Анализ 17-летней выживаемости в зависимости от направленности динамики МТ продемонстрировал более высокие показатели (81,7%) в группе лиц, чья МТ увеличилась в предшествующий период более, чем на 5%. У лиц со стабильной МТ уровень 17-летней выживаемости составил 74,2% (p=0,006). Снижение МТ на >5% уменьшало шансы остаться в живых через 17 лет наблюдения до 59,5% (p<0,001) (рисунок 1).

# Обсуждение

До настоящего времени в большинстве стран мира ИзбМТ и ожирение остаются одной из наиболее важных и во многом нерешенных медикосоциальных проблем. ИзбМТ ассоциируется с большим кругом часто встречающихся хронических заболеваний, среди которых наиболее значимыми являются атерогенные кардиоваскулярные патологии [10]. В большинстве крупных современных эпидемиологических исследований показана Ј-образная зависимость между показателями ИМТ и сердечнососудистой смертностью [11-13]. В связи с этим к настоящему времени показатель ИМТ учитывается во многих прогностических шкалах [10, 14].

Наряду с этим в последние годы представлен ряд публикаций, в которых описана обратная связь между значениями ИМТ и клиническими исходами, демонстрирующими лучшую выживаемость среди лиц с повышенным весом. Новые факты содействовали обновлению научного интереса к проблеме влияния ИзбМТ, ожирения на формирование риска преждевременной смерти и поставили вопрос о целесообразности коррекции веса тела у людей с ССЗ.

История появления термина "парадокс ожирения" началась с исследований нефрологической практики. Так, Degoulet P в 1982г впервые публикует данные о том, что ожирение не ухудшает прогноз выживаемости у больных, находящихся на гемодиализе [3], а в 1999г американский нефролог Kalantar-Zadeh К представил результаты наблюдения, согласно которым у пациентов, находящихся на гемодиализе, риск смерти снижался по мере повышения ИМТ, а у больных со сниженным весом смертность напротив значительно увеличивалась [4]. В дальнейшем, пул работ, в которых была продемонстрирована защитная роль жировой ткани в выживаемости пациентов старшего возраста, имеющих различную патологию (ИБС, хроническая сердечная недостаточность (ХСН), хроническая болезнь почек (ХБП), хроническая обструктивная болезнь легких) только пополнялся, а в научной литературе появился термин "обратная эпидемиология", или "парадокс ожирения" [5].

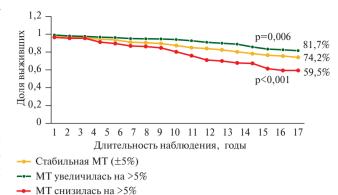



Рис. 1 Графики 17-летней выживаемости в зависимости от направленности динамики МТ (на основе показателей общей смертности).

Примечание: МТ — масса тела.

Предлагались различные механизмы защитного действия жировой ткани: способность аккумулировать в себе различные липофильные токсические вещества [15], способность адипоцитов вырабатывать растворимый рецептор фактора некроза опухоли-альфа и таким образом снижать его уровень в крови, что может сопровождаться снижением активности системного воспаления и замедлением темпов атерогенеза [16].

Одновременно с этим приводились доказательства тому, что "парадокса ожирения" не существует, что это лишь методологическая ошибка анализа данных. Основным доводом было то, что последствия ожирения развиваются медленнее, чем ряд хронических заболеваний, которые могут привести к летальному исходу — например ХСН, ХБП, ИБС и цереброваскулярная болезнь. Такое явление называется "время расхождения конкурирующих факторов риска". Другие доводы — ХСН, ХБП, сахарный диабет (СД) 2 типа — являются заболеваниями, истощающими пациента, при которых уменьшается количество жировой и мышечной ткани; таким образом, наиболее тяжелые заболевания, сопровождаются динамическим снижением МТ человека. Исследование CHARM (Candesartan in Heart failure: Assessment of Reduction in Mortality and Morbidity) в котором приняло участие 6933 пациента, показало взаимосвязь между снижением МТ и повышенной смертностью как от ССЗ, так и от других причин. У больных с ХСН, потерявших ≥5% веса за 6 мес., риск смерти оказался более чем на 50% выше по сравнению с пациентами со стабильным весом. Потеря МТ была сопряжена с особенно высоким риском смерти у пациентов, которые на момент начала исследования уже имели пониженную МТ [17].

Еще одно очень важное для учета и интерпретации результатов объяснение "парадокса ожирения" может быть связано с изменением композиционного состава тела человека с возрастом. Начиная с третьего десятилетия жизни, мышечная МТ человека

снижается, в среднем, на 300 г/год, с этого же периода и до 70 лет увеличивается объём жировой ткани. Вследствие этого общая МТ к пятому-шестому десятилетию повышается, затем происходит стабилизация и уже после 65-70 лет вес тела начинает снижаться. Эти физиологические тренды важно учитывать, интерпретируя результаты проспективных исследований, в которых регистрируется исход в зависимости от направленности динамики МТ.

В настоящем 34-летнем проспективном исследовании (по итогам и 10-летнего, и 17-летнего периодов изучения прогностической роли направленности динамики МТ) отчетливо наблюдается тенденция на повышение риска смерти от ССЗ и смерти от всех причин у лиц с предшествующим снижением МТ >5% от исходного - как относительно респондентов, увеличивших МТ на >5%, так и в сравнении с людьми со стабильной МТ. Данная закономерность наблюдается в общей когорте, в когорте людей среднего возраста и независимо от пола. При стратификации пациентов на средний и пожилой возраст показано, что только в группе пожилых пациентов в отличие от людей средней возрастной группы не зарегистрировано повышения риска смерти от всех причин и сердечнососудистой смерти у лиц, потерявших >5% МТ, относительно лиц с неизменившимся весом. Для правильной оценки полученных результатов важно учитывать, что среди лиц старшего возраста вне связи с направленностью динамики МТ, отмечен более высокий риск смерти по сравнению с людьми среднего возраста, а также то обстоятельство что снижение МТ среди лиц наблюдаемой когорты происходило непреднамеренно (не связано с мерами, активно предпринимаемыми субъектами для достижения контроля МТ).

Результаты, близкие нашим, были получены в наблюдательных исследованиях при других хронических заболеваниях. Так, было показано, что у пациентов с СД 2 типа непреднамеренное снижение МТ сравнительно с повышением веса увеличивает риск осложнённого течения этого заболевания, а также риск смерти больных СД 2 типа [18, 19].

Интересное исследование с точки зрения оценки влияния динамики МТ в разные возрастные периоды на смертность проведено в Китае. В когортное исследование было включено 746991 взрослых в возрасте ≥45 лет из данных Shenzhen Healthcare Big Data. Изменение МТ было классифицировано как: изменение в пределах 5% (стабильное), снижение на 5-10%, снижение на >10%, увеличение на 5-10% и увеличение на >10% [20]. В этом исследовании впервые показано, что только среди пожилых людей снижение МТ и его очень значительное увеличение ассоциированы с повышенным риском смерти, тогда как для лиц среднего возраста предиктором преждевременной смерти явилось только

чрезмерное снижение МТ. Таким образом, существуют как разные причины для чрезмерной динамики МТ в разные возрастные периоды человека, так и снижение адаптационных возможностей к набору МТ в возрасте >65 лет.

Вопрос о том, является ли направленность динамики МТ независимым фактором, детерминирующим риск смерти, остается активно обсуждаемым, также, как и оценка рисков относительно первоначальной МТ, если она является избыточный или имеется ожирение. В другом большом исследовании, выполненном в Китае, с включением в когорту 21028 человек, убедительно показано, что снижение веса связано со значительным повышением риска смерти от злокачественных новообразований, сердечно-сосудистой патологии и смерти от всех причин, тогда как увеличение МТ и длительно сохраняющийся избыточный вес ассоциируются с повышением риска смерти от острого нарушения мозгового кровообращения [21].

Имеет значение причина снижения МТ наблюдаемых лиц. Если оно осуществляется в связи с ожирением и преднамеренно, включая медикаментозное лечение ожирения, такая динамика МТ сопряжена, напротив, с улучшением исходов. Так, медленная или умеренная, но не ускоренная потеря МТ, вызванная препаратами для лечения ожирения, связана с более низким риском смерти от всех причин у лиц с ИзбМТ или ожирением [22].

До настоящего времени не сложилось ясного представления о физиологии старения человека и, в частности, о непосредственно связанной с общей продолжительностью жизни, динамикой МТ в течение всей жизни. Существует понимание, что продолжительность жизни напрямую зависит от возраста, в котором человек достигает максимальной МТ и затем начинает ее терять. Причем снижение МТ связано уже с процессами ухудшения композиционного состава тела за счет снижения тощей МТ и относительного увеличения жировой ткани. Указанием на то, что в т.ч. направленность динамики МТ и композиционный состав тела связаны с продолжительностью жизни, являются результаты недавно проведенного исследования [23]. Аллель є4 гена АРОЕ (АРОЕ4) известен своей отрицательной ассоциацией с долголетием человека; однако механизм этой связи до конца непонятен. АРОЕ4, в т.ч. связан с изменениями МТ, и последние полученные результаты показали взаимосвязь с выживанием в некоторых исследованиях [23, 24]. Динамика изменений МТ, ассоциированных со старением, опосредует влияние АРОЕ4 на продолжительность жизни. В частности, носители АРОЕ4 имеют более низкие шансы дожить до возраста >85 лет, предположительно 14-19% этой связи могут быть обусловлены достижением максимальной МТ в более раннем возрасте. У носителей АРОЕ4 вероятность

умереть в возрасте до 85 лет на 19-22% выше, чем у тех, кто не является носителем [23].

Предполагается, что АРОЕ4 способствует физическому старению (проявляющемуся в более раннем и быстром снижении МТ). Ранее было показано, что самые долгоживущие люди достигают пиковых значений МТ/ИМТ и начинают снижать его позже в своей жизни по сравнению с людьми с обычной продолжительностью жизни [24]. Способность увеличивать МТ и откладывать её снижение на более поздний период жизни также может коррелировать с лучшей физической устойчивостью к жизненным стрессорам, что необходимо для выживания в самом старшем возрасте [25]. Таким образом, этот причинно-следственный анализ показал, что у носителей аллеля АРОЕ4 меньше шансов дожить до 85 лет и дольше, отчасти потому, что они достигают пиковых значений МТ в более молодом возрасте, а затем их МТ снижается быстрее, чем у тех, кто не является носителями этого аллеля [23].

**Ограничения исследования.** В формате эпидемиологического многолетнего проспективного наблюдения не было возможным изучение много-

# Литература/References

- Zou H, Yin P, Liu L, et al. Body-Weight Fluctuation Was Associated with Increased Risk for Cardiovascular Disease, All-Cause and Cardiovascular Mortality: A Systematic Review and Meta-Analysis. Front Endocrinol. 2019;10:728. doi:10.3389/fendo.2019.00728.
- Chen C, Ye Y, Zhang Y, et al. Weight change across adulthood in relation to all cause and cause specific mortality: prospective cohort study. BMJ. 2019;367:I5584. doi:10.1136/bmj.I5584.
- Degoulet P, Legrain M, Réach I. Mortality risk factors in patients treated by chronic hemodialysis. Report of the Diaphane collaborative study. Nephron. 1982;31(2):103-10. doi:10.1159/000182627.
- Kalantar-Zadeh K, Block G, Horwich T, et al. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004;43(8):1439-44. doi:10.1016/j. jacc.2003.11.039.
- Shpagina OV, Bondarenko IZ. "Obesity Paradox" another look at the problem of cardiovascular disease. Obesity and metabolism. 2013;10(4):3-9. (In Russ.) Шпагина О.В., Бондаренко И.З. "Парадокс ожирения" — еще один взгляд на проблему сердечнососудистых заболеваний. Ожирение и метаболизм. 2013;10(4): 3-9. doi:10.14341/omet201343-9.
- Zhang J, Schutte R, Pierscionek B. Association of weight change with cardiovascular events and all-cause mortality in obese participants with cardiovascular disease: a prospective cohort study. Heart. 2025;111(10):454-61. doi:10.1136/heartjnl-2024-324383.
- Dolgalev IV, Trotsenko BA, Obraztsov VV, et al. Natural dynamics of overweight in adults (according to the results of a 17-year prospective study). Sibirskij meditsinskij zhurnal (Tomsk). 2011; 3(1):148-52. (In Russ.) Долгалёв И.В., Троценко Б.А., Образцов В.В. и др. Естественная динамика избыточной массы тела у взрослого населения (по результатам 17-летнего проспективного исследования). Сибирский медицинский журнал (Томск). 2011;3(1):148-52.
- Dolgalev IV, Brazovskaya NG, Ivanova AYu, et al. Impact of hypertension, overweight, hypertriglyceridemia and their combination for mortality rate according to the results of a 27-year cohort

образных влияний сопутствующих заболеваний на направленность динамики МТ и их вклад в формирование риска смерти. Кроме того, в представленном исследовании не учитывался факт преднамеренности снижения МТ.

# Заключение

Результаты 34-летнего проспективного наблюдения показали, что предшествующее снижение МТ более чем на >5% является независимым прогностически неблагоприятным предиктором, повышающим риск смерти от ССЗ и от всех причин.

Наилучшая 17-летняя выживаемость продемонстрирована в группах лиц, у которых МТ увеличилась, по сравнению с теми, у кого МТ не изменилась или снизилась. При оценке риска смерти от ССЗ и от всех причин важно учитывать не только текущий показатель МТ, но и предшествующую направленность динамики МТ.

**Отношения и деятельность:** все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

- ргоѕресtive study. Kardiologiia. 2019;59(S11):44-52. (In Russ.) Долгалёв И.В., Бразовская Н.Г., Иванова А.Ю. и др. Влияние артериальной гипертензии, избыточной массы тела, гипертриглицеридемии и их сочетания на смертность (по результатам 27-летнего когортного проспективного исследования). Кардиология. 2019;59(S11):44-52. doi:10.18087/cardio.n344.
- Dolgalev IV, Ivanova AYu. The risk of overall mortality and cardiovascular mortality depending on the direction of body weight dynamics: a prospective cohort study. Russian Journal of Preventive Medicine. 2022;25(4):41-6. (In Russ.) Долгалев И.В., Иванова А.Ю. Риск общей смертности и смертности от сердечнососудистых заболеваний в зависимости от направленности динамики массы тела: проспективное когортное исследование. Профилактическая медицина. 2022;25(4):41-6. doi:10. 17116/profmed20222504141.
- Piepoli M, Hoes A, Agewall S, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2016). Eur Heart J. 2016;37(29):2315-81. doi:10.1016/j.atherosclerosis. 2016.05.037.
- Whitlock G, Lewington S, Sherliker P. Body-mass index and causespecific mortality in 900000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083-96. doi:10.1016/ S0140-6736(09)60318-4.
- The Global BMI Mortality Collaboration. Body-mass index and allcause mortality: individual participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776-86. doi:10.1016/S0140-6736(16)30175-1.
- Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose–response metaanalysis of 230 cohort studies with 3,74 million deaths among 30,3 million participants. BMJ. 2016;353:i2156. doi:10.1136/bmj.i2156.
- Druzhilov MA, Kuznetsova TYu, Druzhilova OYu. "Obesity paradoxes": main causes of an "inverse" cardiovascular epidemiology. Cardiovascular Therapy and Prevention. 2018;17(5):92-8. (In Russ.) Дружилов М.А., Кузнецова Т.Ю., Дружилова О.Ю.

- "Парадоксы ожирения": основные причины формирования "обратной" кардиоваскулярной эпидемиологии. Кардиоваскулярная терапия и профилактика. 2018;17(5):92-8. doi:10. 15829/1728-8800-2018-5-92-98.
- Hong NS, Kim KS, Lee IK. The association between obesity and mortality in the elderly differs by serum concentrations of persistent organic pollutants: a possible explanation for the obesity paradox. Int J Obes (Lond). 2012;36(9):1170-5. doi:10.1038/ijo. 2011.187.
- Feldman AM, Combes A, Wagner D. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol. 2000;35(3):537-44. doi:10.1016/s0735-1097(99)00600-2.
- Pocock SJ, McMurray JJ, Dobson J. Weight loss and mortality risk in patients with chronic heart failure in the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(21):2641-50. doi:10. 1093/eurhearti/ehn420.
- Rafiei SKS, Fateh F, Arab M, et al. Weight Change and the Risk of Micro and Macro Vascular Complications of Diabetes: A Systematic Review. Malays J Med Sci. 2024;31(3):18-31. doi:10.21315/mjms2024.31.3.2.
- Williamson DF, Thompson TJ, Thun M, et al. Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care. 2000;23(10):1499-504. doi:10.2337/diacare. 23.10.1499.

- Huang QM, Shen D, Gao J, et al. Association of weight change with all-cause and cause-specific mortality: an age-stratified analysis. BMC Med. 2024;22(1):438. doi:10.1186/s12916-024-03665-9.
- Yang H, Wang J, Wang X, et al. Weight change and all-cause and cause-specific mortality: A 25-year follow-up study. Chin Med J (Engl). 2024;137(10):1169-78. doi:10.1097/CM9.0000000000002970.
- Wei J, Hunter D, Lane NE, et al. Weight Loss Induced by Antiobesity Medications and All-Cause Mortality Among Patients With Knee or Hip Osteoarthritis. Arthritis Rheumatol. 2024;76(4):577-86. doi:10.1002/art.42754.
- Holmes R, Duan H, Bagley O, et al. How are APOE4, changes in body weight, and longevity related? Insights from a causal mediation analysis. Front Aging. 2024;5:1359202. doi:10.3389/ fragi.2024.1359202.
- Yashin A, Arbeeva LS, Arbeev KG, et al. Age trajectories of physiological indices: which factors influence them? In: The Springer Series on Demographic Methods and Population Analysis (Dordrecht: Springer). Biodemography of Aging. 2016;40:21-45. doi:10.1007/978-94-017-7587-8
- Ukraintseva S, Duan M, Arbeev K, et al. Interactions Between Genes From Aging Pathways May Influence Human Lifespan and Improve Animal to Human Translation. Front Cell Dev Biol. 2021;9:692020. doi:10.3389/fcell.2021.692020.