Preview

Cardiovascular Therapy and Prevention

Advanced search

Trimetazidine effects on intracellular Са2+ ion concentration in HL-60 human promyelocytes

Abstract

Aim. To investigate the effects of an anti-ischemic medication trimetazidine on Са2+ ion metabolism in human leukocyte and monocyte precursors – HL-60 promyelocytes.
Material and methods. HL-60 cells were cultivated in vitro. Changes in intracellular free Са2+ ion concentration were registered with fluorescent Са2+ probes Fura-2. Results. For the first time it was demonstrated for differentiated and non-differentiated HL-60 cells that an antianginal agent trimetazidine suppressed the activity of plasmatic membrane store operated Са2+ channels (SOC channels). Importantly, trimetazidine did not cause Са2+ ion release from the stores and did not open SOC channels, in contrast to other SOC channel inhibitors, e.g., miconazole. In open SOC channels, trimetazidine and miconazole targeted the same binding areas.
Conclusion. The results obtained demonstrate additional trimetazidine effects, linked to selective SOC channel blockade. It provides new potential explanations for trimetazidine effects on electro-inert cells (e.g. blood phagocytes) and its effects in myocardial ischemia.

About the Authors

E. I. Astashkin
I.M. Sechenov Moscow Medical Academy. Moscow
Russian Federation


M. G. Glezer
I.M. Sechenov Moscow Medical Academy. Moscow
Russian Federation


S. V. Grachev
I.M. Sechenov Moscow Medical Academy. Moscow
Russian Federation


References

1. Young LH, Ikeda Y, Scalia R, Lefer AM. Wortmannin, a potent antineutrophil agent, exerts cardioprotective effects in myocardial ischemia/reperfusion. J Pharmac Experim Ther 2000; 295: 37–43.

2. Ikeda Y, Young LH, Lefer AM. Attenuation of neutrophilmediated myocardial ischemia-reperfusion injury by a calpain inhibitor. Am J Physiol Heart Circ Physiol 2002; 282: H1421–6.

3. Mehta J, Dinerman J, Mehta P, et al. Neutrophil function in ischemic heart disease. Circulation 1989; 79: 549–56.

4. Hansen PR. Role neutrophils in myocardial ischemia and reperfusion. Circulation 1995; 91: 1872–85.

5. Lefer DJ, Granger DN. Oxidative stress and cardic disease. Am J Med 2000; 109: 315–23.

6. Buja LM, Entman ML. Modes of miocardial cell injury and cell death in ischemic heart disease. Circulation 1998; 98: 1355–7.

7. Lucchesi BR. Modulation of leukocyte-mediated myocardial reperfusion injury. Ann Rev Physiol 1990; 52: 561–76.

8. Lee C, Xu DZ, Feketeova E, et al. Store-operated calcium channel inhibition attenuates neutrophil function and postshock acute lung injury. J Trauma 2005; 59(1): 56–63.

9. Chen LW, Shen AY, Chen JS, Wu SN. Differential regulation of Ca2+ influx by fMLP and PAF in human neutrophils: Possible involvement of store-operated Ca2+ channel. Shock 2000; 13(3): 175–82.

10. Hauser CJ, Fekete Z, Goodman ER, et al. CXCR2 stimulation primes CXCR1 [Ca2+] i responses to IL-8 in human neutrophils. Shock 1999; 12(6): 428–37.

11. Putney JW. The pharmacology of capacitative calcium entry. Mol Interv 2001; 1(2): 84–94.

12. Stanley WC, Marzilli M. Metabolic therapy in the tritment of ischemic heart disease; the pharmacology of trimetazidine. Fund Clin Pharmacol 2003; 17: 133–45.

13. Lopaschuk GD, Barr R, Thomas PD, Dyck JRB. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2003; 93: 33e-7.

14. Astarie-Dequeker C, Joulin Y, Devynck MA. Inhibitory effect of trimetazidine on trombin-induced aggregation and calcium entry into human platelets. J Cardiovascular Pharmacology 1994; 23(3): 401–7.

15. Williams FM, Tanda K, Kus M, Williams TJ. Trimetazidine inhibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits. J Cardiovasc Pharmac 1993; 22: 828–33.

16. Асташкин Е.И., Смирнов О.Н., Гривенников И.А. и др. Верапамил подавляет активность потенциал-управляемых Са2+ каналов и не влияет на активность Са2+ каналов, регулируемых внутриклеточными Са2+ депо, в РС-12 клетках. ДАН 1998; 362(6): 834–7.

17. Lytton J, Weslian M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biolog Chemystry 1991; 266(26): 17067–71.

18. Tritto I, Wang P, Kuppusamy P, et al. The Anti-Anginal Drug Trimetazidine Reduces Neutrophil-Mediated Cardiac Reperfusion Injury. J Cardiovasc Pharmac 2005; 46(1): 89–98.

19. Di Napoli P. The metabolic approach to improving prognosis in ischemic heart disease. Heart and Metabol 2007; 36: 27–31.

20. Hunton DL, Lucches PA, Pang Yi, et al. Capacitative calcium entry contributes to Nuclear Factor of Activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 2002; 277(10): 14266–72.

21. Tabbi-Anneni l, Lucien A, Grynberg A. Trimetazidine effect on phospholipid synthesis in ventricular myocytes: consequence in α-adrenergic signaling. Fundam Clin Pharmacol 2003; 17: 51–9.


Review

For citations:


Astashkin E.I., Glezer M.G., Grachev S.V. Trimetazidine effects on intracellular Са2+ ion concentration in HL-60 human promyelocytes. Cardiovascular Therapy and Prevention. 2008;7(5):62-67. (In Russ.)

Views: 440


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)