Pharmacological correction of pro- and anti-inflammatory cytokine induction and energy metabolism system state in patients with coronary heart disease and chronic heart failure
https://doi.org/10.15829/1728-8800-2011-5-37-42
Abstract
Aim. To investigate the associations between the severity of inflammatory reaction and bio-energetic insufficiency development in patients with coronary heart disease (CHD) and reduced cardiac contractility; to assess the effectiveness of the pharmacological correction of these disturbances.
Material and methods. This randomised, controlled study included 92 CHD patients (mean CHD duration 5,4±4,8 years) with effort and rest angina, Stage II-III arterial hypertension, and cardiac arrhythmias and blocks of various aetiology. The control group (CG) received standard treatment, while the main group (MG) was also administered a cardio-tonic and cardio-protective medication, adenocin, for 10-14 days. Venous blood levels of pro- and anti-inflammatory cytokines, aldosterone, and redox NAD/NADH potential were measured.
Results. Adenocin treatment was associated with an improvement in chronic heart failure (CHF) symptoms, cardiac remodelling regression, increased velocity of circular shortening of myocardial fibres, increased ejection fraction (EF), and normalised diastolic function. The improvement in intra-cardiac hemodynamics correlated with increased plasma NAD/NADH potential. In the CG, the summary ratios of pro- and anti-inflammatory cytokine levels did not change, while in the MG, they nearly halved after the treatment course.
Conclusion. Myocardial remodelling regression, induced by adding adenocin to the complex therapy of CHD patients with CHF and left ventricular dysfunction, was associated with improved cardiac geometry, systolic and diastolic function, increased redox potential, and reduced maladaptation of immune and inflammatory reactions.
About the Authors
V. E. MalikovRussian Federation
Moscow
M. A. Arzumanyan
Russian Federation
Moscow
O. P. Donetskaya
Russian Federation
Moscow
References
1. Беленков Ю.Н., Мареев В.Ю. Лечение сердечной недостаточности в XXI веке: достижения, вопросы и уроки доказательной медицины. Кардиология 2008; 2: 6-16.
2. Бокерия Л.А., Маликов В.Е., Арзуманян Е.А. и др. Рациональная фармакоррекция синдрома системного воспалительного ответа у больных со сниженной сократительной функцией сердца. Бюлл. Сердечно-сосудистой хирургии. Гематология 2008; 2: 45-53.
3. Оганов Р.Г. Развитие профилактической кардиологии в России. Кардиоваск тер профил 2004; 3: 10-4.
4. Сукоян Г.В., Галенко-Ярошевский В.П., Петров Ю.М. Ишемическая болезнь сердца: стратегия фармакологического вторжения и коррекция метаболизм миокарда. В кн. Ишемическая болезнь сердца. Под ред. ГаленкоЯрошевского П.А., Москва “Медицина” 2007; 310-63.
5. Сукоян Г.В., Антелава Н.А. Рациональная фармакотерапия синдрома системного воспалительного ответа при тяжелой недостаточности сердца в эксперименте. Бюлл экспер биол 2009; 4: 411-4.
6. Татенкулова С.Н., Мареев В.Ю., Зыков К.А., Беленков Ю.Н. Роль гуморальных воспалительных факторов в патогенезе ишемической болезни сердца. Кардиология 2009; 1: 4-8.
7. Aller MA, Arias JL, Nava MP, Arias J. Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune, and endocrine functional systems. Exp Biol Med 2004; 229: 170-81.
8. Apostolakis St, Lip GYH, Shantsila E. Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovascular Research 2010; 85: 649-60.
9. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007; 32: 12-9.
10. Chini EN. CD38 as a regulator of cellular NAD; a novel potential pharmacological target for metabolic condition. Current Pharmaceutical Design 2009; 16: 57-63.
11. Erekowitz JA, Kaul P, Bakal AJ, et al. Trends in heart failure: has the incident diagnosis of heart failure shifted from the hospital to the emergency department and outpatient clinics? Eur Heart Failure 2011; 13: 142-7.
12. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and in↓ammation. Cardiovasc Res 2009; 81: 474-81.
13. Fliegert R, Gasser A, Guse1 AH. Regulation of calcium signalling by adenine-based second messengers. Biochemical Society Transactions 2007; 3: 109-14.
14. Houtkooper RH, Canto C, Wanders RJ, Anwers J. The secret life of NAD: an old metabolite controlling new metabolic signaling pathways. Endocrine Rev 2009; 12: 26-40.
15. Hunt SA, Abraham WT, Chin MH, et al. American College of Cardiology Foundation; American Heart Association 2009. Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis Management of Heart Failure in Adults. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. 2009. JACC 2009; 53: e1-90.
16. Gall↓ M, Van Gool F, Rongvaux A, et al. The Nicotinamide Phosphoribosyltransferase: A Molecular Link between Metabolism, Inflammation, and Cancer. Cancer Res., 2010; 70: 8 — 11.
17. Landmesser Ulf, Wollert KC, Drexler H. Potential novel pharmacological therapies for myocardial remodeling. Cardiovascular Res 2009; 81: 519-27.
18. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 2001; 286: 2107-13.
19. McKee MG, Morevec CS. Biofeedback in the treatment of heart failure. Cleveland Clinic J Medicine 2010; 77(3): S56-9.
20. Park J-H, Kim S-Y, Jang KY. Inhibition of ADP-ribosyl cyclase attenuates angiotensin II-induced cardiac hypertrophy. Cardiovascular Research 2009; 81: 582-91.
21. Pollak N, D↓Olle C, Ziegler M. The power to reduce: pyridine nucleotides — small molecules with a multitude of functions. Biochem J 2007; 402: 205-18.
22. Xia W, Wang Z, Wang Q, et al. Roles of NAD+/NADH and NADP+ / NADPH in Cell Death. Curr Pharmac Design 2009; 15: 12-9.
23. Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130: 1095-107.
24. Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci 2006; 11: 3129-48.
Review
For citations:
Malikov V.E., Arzumanyan M.A., Donetskaya O.P. Pharmacological correction of pro- and anti-inflammatory cytokine induction and energy metabolism system state in patients with coronary heart disease and chronic heart failure. Cardiovascular Therapy and Prevention. 2011;10(5):37-42. (In Russ.) https://doi.org/10.15829/1728-8800-2011-5-37-42