Role of miRNA in the development of atrial fibrillation in patients with valvular heart disease
https://doi.org/10.15829/1728-8800-2020-2420
Abstract
Atrial fibrillation (AF) is a common type of arrhythmia that is frequently observed in clinical practice. In patients admitted to the cardiac surgery department, AF most often develops due to valvular heart disease, as well as in the postoperative period. Modern surgical techniques for valvular defects make it possible to get rid of AF. However, there are still unresolved issues of treatment tactics, the selection of procedure and the correct selection of patients for surgery. In order to find answers to these questions, the influence of microribonucleic acids (miRNAs) on the development and course of AF is being studied. The article presents an analytical review on the influence of miRNA on the occurrence, regulation and course of AF in patients with valvular heart disease before surgery and in the postoperative period.
About the Authors
I. V. AbdulyanovRussian Federation
Kazan
N. B. Amirov
Russian Federation
M. R. Gaisin
Russian Federation
Kazan
A. E. Kaipov
Russian Federation
A. I. Abdrakhmanova
Russian Federation
Kazan
References
1. Ball J, Carrington MJ, McMurray JJ, et al. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167:1807-24. doi:10.1016/j.ijcard.2012.12.093.
2. Andrade J, Khairy P, Dobrev D, et al. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114:1453-68. doi:10.1161/aRCRESAHA.114.303211.
3. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-2962. doi: 10.1093/eurheartj/ehw210.
4. Goette A, Kalman JM, Aguinaga L, et al. EHRA/HRS/APHRS/ SOLAECE expert consensus on atrial cardiomyopathies: definition, characterisation, and clinical implication. Europace. 2016;18(10):1455-90. doi:10.1093/europace/euw161.
5. Wakili R, Voigt N, Kaab S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011; 121:295568. doi:10.1172/JCI46315.
6. McManus DD, Tanriverdi L, Esa N, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm. 2015;12(1):3-10. doi:10.1016/j.hrthm.2014.09.050.
7. Santulli G, Iaccarino G, De Luca N, et al. Atrial fibrillation and microRNAs. Front Physiol. 2014;5:15. doi:10.3389/fphys.2014.00015.
8. Jalife J. Dejavu in the theories of atrial fibrillation dynamics. Cardiovasc Res. 2011;89(4):766-75. doi:10.1093/cvr/cvq364.
9. Rinn JL, Chang HY. Genome regulation by Long Noncoding RNAs. Annual Review of Biochemistry. 2012;81:145-66. doi: 10.1146/annurev-biochem-051410-092902.
10. Filatov AG, Tarashvili EG. Epidemiology and social significance of atrial fibrillation. Annals of arrhythmology. 2012;9(2):5-13. (In Russ.)
11. Tatarsky BA, Popov SV, Kazennova NV. А^! fibrillation and heart failure: approaches to antithrombotic therapy. Russ J 23. Cardiol. 2017;(7):132-8. (In Russ.) doi:10.15829/1560-4071-2017-7-132-138.
12. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/ American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014; 130(23):2071-104. doi:10.1161/CIR.0000000000000040.
13. Kawasaki M, Berger WR, Neefs J, et al. Send to MicroRNAs in Atrial Fibrillation: from Expression Signatures to Functional Implications. Cardiovasc Drugs Ther. 2017;31(3):345-65. doi:10.1007/s10557-017-6736-z.
14. McManus DD, Lin H, Tanriverdi K, et al. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study. Heart Rhythm. 2014;11(4):663-9. doi:10.1016/j.hrthm.2014.01.018.
15. Krogstad LE, Slagsvold KH, Wahba A. Remote ischemic preconditioning and incidence of postoperative atrial fibrillation. Scand Cardiovasc J. 2015;49(3):117-22. doi:10.3109/14017431.2015.1010565.
16. Yamac AH, Kucukbuzcu S, Ozansoy M, et al. Altered expression of micro-RNA 199a and increased levels of cardiac SIRT1 protein are associated with the occurrence of atrial fibrillation after coronary artery bypass graft surgery. Cardiovasc Pathol. 2016;25:232-6. doi:10.1016/j.carpath.2016.02.002.
17. Yamac AH, Huyut MA, Yilmaz E, et al. MicroRNA 199a Is Downregulated in Patients After Coronary Artery Bypass Graft Surgery and Is Associated with Increased Levels of Sirtuin 1 (SIRT 1) Protein and Major Adverse Cardiovascular Events at 3-Year FollowUp. Med Sci Monit. 2018;24:6245-54. doi:10.12659/MSM.912065.
18. Goren Y, Meiri E, Hogan C, et al. Relation of reduced expression of miR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014;113:976-81. doi:10.1016/j.amjcard.2013.11.060.
19. Liu H, Qin H, Chen G, et al. Comparative expression profiles of microRNA in left and right atrial appendages from patients with rheumatic mitral valve disease exhibiting sinus rhythm or atrial fibrillation. J Transl Med. 2014;12:90. doi: 10.1186/1479-5876-12-90.
20. Cooley N, Cowley MJ, Lin RC, et al. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics. 2012;44(3):211-9. doi:10.1152/physiolgenomics.00111.2011.
21. Jiang X, Tsitsiou E, Herrick SE, et al. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277:2015-21. doi: 10.1111/j.1742-4658.2010.07632.x.
22. Gangwar RS, Rajagopalan S, Natarajan R, et al. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens. 2018;31(2):150-65. doi:10.1093/ajh/hpx197.
23. Liu H, Chen GX, Liang MY, еt al. Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis. BMC Cardiovasc Disord. 2014;14:10. doi:10.1186/1471-2261-14-10.
24. Coffey S, Williams MJ, Phillips LV, et al. Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci Rep. 2016;6:36904. doi:10.1038/srep36904.
25. Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122:2378-87 doi: 10.1161/CIRCULATIONAHA.110.958967
26. Camm AJ, Lip GY, De Caterina R, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012;33(21):2719-47. doi:10.1093/eurheartj/ehs253.
27. 27 Mamchur IN, Chichkova TY, Karetnikova VN, et al. Left atrial mechanical function and its disorders after pulmonary vein antrum isolation. Complex Problems of Cardiovascular Diseases. 2018;7(2):137-45. (In Russ.) doi: 10.17802/2306-1278-2018-7-2-137-145.
28. Abdulianov IV, Sungatullin MA, Vagizov II, et al. Comparison of the effectiveness of surgical treatment of persistent atrial fibrillation using biatrial and left atrial radiofrequency ablation in patients with mitral valve replacement. Practical medicine. 2018;16(9):62-8. (In Russ.) doi:10.32000/2072-1757-2018-9-62-68.
29. Lau DH, Nattel S, Kalman JM, et al. Modifiable Risk Factors and Atrial Fibrillation. Circulation. 2017;136:583-96. doi:10.1161/CIRCULATIONAHA.116.023163.
30. Sardu C, Santamaria M, Paolisso G, et al. MicroRNA expression changes after atrial fibrillation catheter ablation. Pharmaco-genomics. 2015;16(16):1863-77 doi:10.2217/pgs.15.117.
31. Adam O, Theobald K, Lavall D, et al. Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation. J Mol Cell Cardiol. 2011;50(4);678-85. doi:10.1016/j.yjmcc.2010.12.019.
Review
For citations:
Abdulyanov I.V., Amirov N.B., Gaisin M.R., Kaipov A.E., Abdrakhmanova A.I. Role of miRNA in the development of atrial fibrillation in patients with valvular heart disease. Cardiovascular Therapy and Prevention. 2020;19(5):2420. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2420