Role of air pollution by particulate matter in the pathogenesis of cardiovascular diseases. Prevention measures
https://doi.org/10.15829/1728-8800-2020-2421
Abstract
The review highlights contemporary concepts about the role of atmospheric air pollution by particulate matter (PM) in pathogenesis of cardiovascular diseases (CVD). We used publications from the PubMed and Russian Science Citation Index databases. The influence of PM on the development and progression of CVD is considered depending on size, origin, chemical composition, concentration in air. PM with an aerodynamic diameter of ≤2,5 μm (PM2,5) are recognized as the most dangerous. Epidemiological studies have established a dose-dependent effect PM. Oxidative stress, damage of genome of cell and epigenetic changes associated with PM effect are the important component of CVD pathogenesis. Systematization of scientific data through a formalized description helps to understand the pathogenesis of CVD and facilitates its practical use for assessing the risk of occurrence, early diagnosing, prognostication, increasing the effectiveness of treatment, and developing preventive measures.
Keywords
About the Authors
A. F. KolpakovaRussian Federation
Kolpakova Alla F. — MD, Professor, Leading Researcher of laboratory for modeling geoecological systems of ICT SB RAS
Novosibirsk
SPIN 6318-0028
R. N. Sharipov
Russian Federation
Sharipov Ruslan N. — Project Manager, BIOSOFT.RU, LLC; Senior Lecturer, SESC of NSU
Novosibirsk
SPIN 1214-2918
O. A. Volkova
Russian Federation
Volkova Oxana A. — PhD, researcher of Laboratory of Genetic Engineering, FIC Institute of Cytology and Genetics, SB RAS
Novosibirsk
SPIN 8803-1300
F. A. Kolpakov
Russian Federation
Kolpakov Fedor A. — PhD, Head of Laboratory of Bioinformatics, ICT SB RAS; Technical Director of BIOSOFT.RU, LLC
Novosibirsk
References
1. Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367-71. doi:10.1038/nature15371.
2. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659-724. doi:10.1016/S0140-6736(16)31679-8.
3. World Health Organization: Ambient (outdoor) air quality and health. 2018. https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (14 Nov 2019).
4. European recommendations for the prevention of cardiovascular diseases in clinical practice (2016 revision). Russian Journal of Cardiology. 2017;22(6):7-85. (In Russ.) doi:10.15829/1560-4071-2017-6-7-85.
5. On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2016: State report. — M.: Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2017 (In Russ.) https://www.rospotrebnadzor.ru/upload/iblock/0b3/gosudarstvennyydoklad-2016.pdf (14 ноября 2019).
6. McGuinn LA, Ward-Caviness CK, Neas LM, et al. Association between satellite-based estimates of long-term PM2.5 exposure and coronary artery disease. Environ Res. 2016;145:9-17. doi:10.1016/j.envres.2015.10.026.
7. Meng X, Zhang Y, Yang K-Q, et al. Potential Harmful Effects of PM 2.5 on Occurrence and Progression of Acute Coronary Syndrome: Epidemiology, Mechanisms, and Prevention Measures. Int J Environ Res Public Health. 2016;13:748. doi:10.3390/ijerph13080748.
8. Li J, Cheng Y, Guo S, et al. Association between ambient particulate matter air pollution and ST-elevation myocardial infarction: A case-crossover study in a Chinese city. J Chemosphere. 2018;12: 219:724-9. doi:10.1016/j.chemosphere.2018.12.094.
9. Chen SY, Wu CF, Lee JH, et al. Associations between long-term air pollutant exposures and blood pressure in elderly residents of Taipei city: a cross-sectional study. Environ Health Perspect. 2015;123:779-84. doi:10.1289/ehp.1408771.
10. Liu C, Chen R, Zhao Y, et al. Associations between ambient fine particulate air pollution and hypertension: a nationwide crosssectional study in China. Sci Total Environ. 2017;584-585:869-74. doi:10.1016/j.scitotenv.2017.01.133.
11. Lui H, Tian Y, Cao Y, et al. Fine particulate air pollution and hospital admissions and readmissions for acute myocardial infarction in 26 Chinese cities. J Chemosphere. 2018;192:282-8. doi:10.1016/j.chemosphere.2017.10.123.
12. Yang BY, Guo Y, Bloom MS, et al. Ambient PM1 air pollution, blood pressure, and hypertension: Insights from the 33 Communities Chinese Health Study. Environ Res. 2019;170:252-9. doi:10.1016/j.envres.2018.12.047.
13. Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(17):2054-70. doi:10.1016/j.jacc.2018.07.099.
14. Wang X, Kindzierski W, Kaul P. Comparison of transient associations of air pollution and AMI hospitalisation in two cities of Alberta, Canada, using a case-crossover design. BMJ Open. 2015;5(11):e009169. doi:10.1136/bmjopen-2015-009169.
15. Zhang Q, Qi W, Yao W, et al. Ambient particulate matter (PM 2.5 /PM10) exposure and emergency department visits for acute myocardial infarction in Chaoyang District, Beijing, China during 2014: A case-crossover study. J Epidemiol. 2016;26(10):538-45. doi:10.2188/jea.JE20150209.
16. Shahrbaf MA, Mahjoob MP, Khaheshi I, et al. The role of air pollution on ST-elevation, myocardial infarction: a narrative mini review. Future Cardiol. 2018;14(4):301-6. doi:10.2217/fca-2017-0078.
17. Bourdrel T, Bind M-A, Béjot Y, et al. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. 2017;110(11):634-42. doi:10.1016/j.acvd.2017.05.00.
18. Lin H, Guo Y, Zheng Y, et al. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults. Hypertension. 2017;69(5):806-12. doi:10.1161/HYPERTENSIONAHA.116.08839.
19. Song J, Lu M, Lu J, et al. Acute effect of ambient air pollution on hospitalization in patients with hypertension: A time-series study in Shijiazhuang, China. Ecotoxicol Environ Saf. 2019;170:286-92. doi:10.1016/j.ecoenv.2018.11.125.
20. Lawal AO. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicol Lett. 2017;270:88-95. doi:10.1016/j.toxlet.2017.01.017.
21. Stone V, Miller M R, Clift MJD, at al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ Health Perspect. 2017;125(10):106002. doi:10.1289/EHP424.
22. Kelly FJ, Fussel JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med. 2017;110:345-67. doi:10.1016/j.freeradbiomed.2017.06.019.
23. Li R, Kou X, Geng H, et al. Mitochondrial damage: An important mechanism of ambient PM 2.5 exposure-induced acute heart injury in rats. J Hazard Mater. 2015;287:392-401. doi:10.1016/j.jhazmat.2015.02.006.
24. Kennedy DJ, Shrestha K, Sheehey B, et al. Elevated plasma marinobufagenin, an endogenous cardiotonic steroid, is associated with right ventricular dysfunction and nitrative stress in heart failure. Circ Heart Fail. 2015;8:1068-76. doi:10.1161/CIRCHEARTFAILURE.114.001976.
25. Thondapu V, Bourantas CV, Foin N, et al. Biomechanical stress in coronary atherosclerosis: Emerging insights from computational modelling. Eur Heart J. 2017;38(2):81-92. doi:org/10.1093/eurheartj/ehv689.
26. Gillette M, Morneau K, Hoang V, et al. Antiplatelet management for coronary heart disease: Advances and challenges. Curr Atheroscler Rep. 2016;18(6):35. doi:10.1007/s11883-016-0581-6.
27. Mordukhovich I, Coull B, Kloog I, et al. Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an elderly cohort: the Normative Aging Study. Environ Health. 2015;14:87. doi:10.1186/s12940-015-0074-z.
28. Wagner JG, Kamal AS, Morishita M, et al. PM 2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol. 2014;11:25. doi:10.1186/1743-8977-11-25.
29. Bai X, Liu Y, Wang S, et al. Ultrafine particle libraries for exploring mechanisms of PM2.5-induced toxicity in human cells. Ecotoxicol Environ Saf. 2018;157:380-7. doi:0.1016/j.ecoenv.2018.03.095.
30. Ustinova OYu, Vlasova EM, Nosov AE, et al. Assessment of cardiovascular pathology risk in miners employed at deep chrome mines. Health Risk Analysis. 2018;3:94-103. (In Russ.) doi:10.21668/health.risk/2018.3.10.
31. Feng L, Yang X, Asweto CO, et al. Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells. Environ Sci Pollut Res Int. 2017;24(36):27767-77. doi:10.1007/s11356-017-0228-3.
32. McGuinn LA, Schneider A, Robert W, et al. Association of longterm PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk. Environ Int. 2019;122:193- 200. doi:10.1016/j.envint.2018.11.001.
33. Wu XM, Broadwin R, Basu R, et al. Associations between fine particulate matter and changes in lipids/lipoproteins among midlife women. Sci Total Environ. 2019;654:1179-86. doi:10.1016/j.scitotenv.2018.11.149.
34. Byun HM, Colicino E, Trevisi L, et al. Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of Heart Rate Variability. J Am Heart Assoc. 2016;5(4):pii: e003218. doi:10.1161/JAHA.116.003218.
35. Rodosthenous RS, Coull BA, Lu Q, et al. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol. 2016;13:13. doi:10.1186/s12989-016-0121-0.
36. Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol. 2018;15:1. doi:10.1186/s12989-017-0237-x.
37. Feng L, Yang X, Asweto CO, et al. Genome-wide transcriptional analysis of cardiovascular-related genes and pathways induced by PM2.5 in human myocardial cells. Environ Sci Pollut Res Int. 2017;24(12):11683-93. doi:10.1007/s11356-017-8773-3.
38. Wang Y, Zou L, Wu T, et al. Identification of mRNA-miRNA crosstalk in human endothelial cells after exposure of PM2.5 through integrative transcriptome analysis. Ecotoxicol Environ Saf. 2019;169:863-73. doi:10.1016/j.ecoenv.2018.11.114.
39. Xu X, Xu H, Qimuge A, et al. MAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposure. Ecotoxicol Environ Saf. 2019;170:188-94. doi:10.1016/j.ecoenv.2018.11.124.
40. Viehmann A, Hertel S, Fuks K, et al. Long-term residential exposure to urban air pollution, and repeated measures of systemic blood markers of inflammation and coagulation. Occup Environ Med. 2015;72:656-63. doi:10.1136/oemed-2014-102800.
41. Yorifuji T, Kashima S, Doi H. Fine-particulate air pollution from diesel emission control and mortality rates in Tokyo: a quasiexperimental study. Epidemiology. 2016;27:769-78. doi:10.1097/EDE.0000000000000546.
42. Yarahmadi M, Hadei M, Nazari SSH, et al. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran. Environ Sci Pollut Res Int. 2018;25(14):14254-62. doi:10.1007/s11356-018-1680-4.
43. Faridi S, Shamsipour M, Krzyzanowski M, et al. Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006-2015. Environ Int. 2018;114:37-49. doi:10.1016/j.envint.2018.02.026.
44. Azarov VK, Gaysin SV, Kutenev VF. On the issue of environmentally friendly urban transport. Zhurnal avtomobil’nyh inzhenerov. 2016;2:36-41. (In Russ.) Азаров В.К., Гайсин С.В., Кутенёв В.Ф. К вопросу об экологически чистом городском транспорте. Журнал автомобильных инженеров. 2016;2:36-41.
45. Treskova YuV. Problems of rate setting fine dispersed particles in Russia and abroad. Molodoj uchenyj. 2017;23:17-9. (In Russ.) https://moluch.ru/archive/157/44398/ (15.11.2019).
46. Sofiev M, Winebrake JJ, Johansson L, et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat Commun. 2018;9(1):406. doi:10.1038/s41467-017-02774-9
47. Ferguson MD, Semmens EO, Dumke C, et al. Measured pulmonary and systemic markers of inflammation and oxidative stress following wildland firefighter simulations. J Occup Environ Med. 2016;58:407-41. doi:10.1097/JOM.0000000000000688.
48. Héroux ME, Braubach M, Korol N, et al. The main conclusions about the medical aspects of air pollution: the projects REVIHAAP and HRAPIE WHO/EC. Hygiene and Sanitation. 2013;6:9-14. (In Russ.)
49. Oganov RG, Maslennikova GYa. Individual prevention of cardiovascular diseases. The position of the European Society of Cardiology. Cardiovascular Therapy and Prevention. 2017;16(1):4- 7. (In Russ.) doi:10.15829/1728-8800-2017-1-4-7.
Review
For citations:
Kolpakova A.F., Sharipov R.N., Volkova O.A., Kolpakov F.A. Role of air pollution by particulate matter in the pathogenesis of cardiovascular diseases. Prevention measures. Cardiovascular Therapy and Prevention. 2020;19(3):2421. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2421