Preview

Cardiovascular Therapy and Prevention

Advanced search

Debatable points of using angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists in patients with COVID-19

https://doi.org/10.15829/1728-8800-2020-2580

Abstract

The COVID-19 pandemic is a serious threat to global health. The infection mechanism is the binding of SARS-CoV-2 to angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. ACE inhibitors/angiotensin receptor antagonists (ARA) are known to increase ACE2 expression and are recommended for the treatment of many cardiovascular diseases (CVD). Thus, it has been suggested that treatment with renin-angiotensin-aldosterone system blockers (RAAS) increases the viral load and the risk of severe acute respiratory distress syndrome. However, ACE2 also converts angiotensin II into substances with cardioprotective effects. In addition, there is no evidence that RAAS inhibitors increase the severity of COVID-19 infection, while the risks of withdrawal of ACE inhibitors/ARA in patients with CVD are proven. There is also no evidence to support the idea that the administration of ACE inhibitors/ARA promotes the coronavirus’s penetration by increasing the ACE2 expression. According to the guidelines of the Russian Society of Cardiology and the consensus statements of international cardiology societies, it is necessary to continue taking RAAS inhibitors in high-risk patients with COVID-19. This review provides an analysis of foreign articles revealing the pathophysiological pathways and recommendations for using ACE inhibitors/ARA in patients with CVD and COVID-19 infection.

About the Authors

O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Drapkina Oksana M.

Moscow

eLibrary SPIN: 4456-1297;



L. E. Vasilyeva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Vasilyeva Lyubov E.

Moscow

eLibrary SPIN: 3560-8830



References

1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507- 13. doi:10.1016/S0140-6736(20)30211-7.

2. JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (07 May 2020).

3. WHO. The situation of COVID-19 in the WHO European Region. https://who.maps.arcgis.com/apps/opsdashboard/index.html#/a19d5d1f86ee4d99b013eed5f637232d (07 May 2020).

4. The Russian Government. Official information about coronavirus in Russia. https://стопкоронавирус.рф (07 May 2020). (In Russ.)

5. Wu Z, McGoogan JM. Characteristics of and important Lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a Report of 72314 cases from the Chinese Center for disease control and Prevention. JAMA. 2020;323(13):1239-42. doi:10.1001/jama.2020.2648.

6. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health. 2020;2(4):e201-8. doi:10.1016/S2589-7500(20)30026-1.

7. Zhang YP. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol. 2020;41:145-51. doi:10.46234/ccdcw2020.032.

8. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-81. doi:10.1001/jama.2020.5394.

9. Emami A, Javanmardi F, Pirbonyeh N, et al. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8(1):e35.

10. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi:10.1056/NEJMoa2002032.

11. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensinconverting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-10. doi:10.1161/CIRCULATIONAHA.104.510461.

12. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020. 2020.01.31.929042. doi:10.1101/2020.01.31.929042.

13. Watkins J. Preventing a COVID-19 pandemic. BMJ. 2020;368:m810. doi:10.1136/bmj.m810.

14. Zhang P, Zhu L, Cai J, et al. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res. 2020. doi:10.1161/CIRCRESAHA.120.317134.

15. Jarcho JA, Ingelfinger JR, Hamel MB, et al. Inhibitors of the ReninAngiotensin-Aldosterone System and Covid-19. N Engl J Med. 2020. doi:10.1056/NEJMe2012924.

16. Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-AngiotensinAldosterone System Inhibitors and Risk of Covid-19. N Engl J Med. 2020. doi:10.1056/NEJMoa2008975.

17. Mehra MR, Desai SS, Kuy S, et al. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med. 2020. doi:10.1056/NEJMoa2007621.

18. European Society of Cardiology. Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-councilon-hypertension-on-ace-inhibitors-and-ang (16 March 2020).

19. HFSA, ACC, AHA. Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. https://www.acc.org/latest-in-cardiology/articles/2020/03/17/08/59/hfsa-acc-aha-statement-addressesconcerns-re-using-raas-antagonists-in-covid-19 (20 March 2020).

20. ACC. COVID-19 Clinical Guidance For The Cardiovascular Care Team. https://www.acc.org/~/media/665AFA1E710B4B3293138D14BE8D1213.pdf (12 March 2020)

21. Shlyakhto EV, Konradi AO, Arutjunov GP, et al. Guidelines for the diagnosis and treatment of cardiovascular system diseases in context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):3801. (In Russ.) doi:10.15829/1560-4071-2020-3-3801.

22. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1-9. doi:10.1161/01.res.87.5.e1.

23. Xu J, Sriramula S, Xia H, et al. Clinical relevance and role of neuronal AT1 receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circ Res. 2017;121(1):43-55. doi:10.1161/CIRCRESAHA.116.310509.

24. Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/ angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev. 2018;98(1):505-53. doi:10.1152/physrev.00023.2016.

25. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the reninangiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125(Pt A):21-38. doi:10.1016/j.phrs.2017.06.005.

26. Patel VB, Zhong JC, Grant MB, et al. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313-26. doi:10.1161/CIRCRESAHA.116.307708.

27. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020. doi:10.1007/s11684-020-0754-0.

28. Serfozo P, Wysocki J, Gulua G, et al. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (AngiotensinConverting Enzyme 2)-Independent. Hypertension. 2020;75(1):173-82. doi:10.1161/HYPERTENSIONAHA.119.14071.

29. Chen L, Liu W, Zhang Q, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. 2020; 9(1):313- 9. doi:10.1080/22221751.2020.1725399.

30. Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi:10.1016/S0140-6736(20)30251-8.

31. Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020. doi:10.1002/jmv.25726.

32. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi:10.1038/s41586-020-2012-7.

33. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;pii:S0006- 291X(20)30339-9. doi:10.1016/j.bbrc.2020.02.071.

34. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80. e8. doi:10.1016/j.cell.2020.02.052.

35. Wrapp D, Wang N, Corbett KS, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-63. doi:10.1126/science.abb2507.

36. Hofmann H, Geier M, Marzi A, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319(4):1216-21. doi:10.1016/j.bbrc.2004.05.114.

37. Guo J, Huang Z, Lin L, et al. Coronavirus Disease 2019 (COVID19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/ Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc. 2020;9(7):e016219. doi:10.1161/JAHA.120.016219.

38. Soro-Paavonen A, Gordin D, Forsblom C, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens. 2012;30(2):375-83. doi:10.1097/HJH.0b013e32834f04b6.

39. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. doi:10.1038/nm1267.

40. Tan WSD, Liao W, Zhou S, et al. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018;40:9-17. doi:10.1016/j.coph.2017.12.002.

41. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;e200950. doi:10.1001/jamacardio.2020.0950.

42. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. doi:10.1111/j.1365-2362.2009.02153.x.

43. Basu R, Poglitsch M, Yogasundaram H, et al. Roles of angiotensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol. 2017;69(7):805-19. doi:10.1016/j.jacc.2016.11.064.

44. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;323(16):1612-4. doi:10.1001/jama.2020.4326.

45. Vaduganathan M, Vardeny O, Michel T, et al. Renin-AngiotensinAldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020;382(17):1653-9. doi:10.1056/NEJMsr2005760.

46. Halliday BP, Wassall R, Lota AS, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomized trial. Lancet. 2019;393(10166):61-73. doi:10.1016/S0140-6736(18)32484-X.

47. Thomas MC, Pickering RJ, Tsorotes D, et al. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ Res. 2010;107(7):888-97. doi:10.1161/CIRCRESAHA.110.219279.

48. Furuhashi M, Moniwa N, Mita T, et al. Urinary angiotensinconverting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens. 2015;28(1):15-21. doi:10.1093/ajh/hpu086.

49. Vuille-dit-Bille RN, Camargo SM, Emmenegger L, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47(4):693-705. doi:10.1007/s00726-014-1889-6.

50. Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75:00-00. doi:10.1161/HYPERTENSIONAHA.120.15082.


Review

For citations:


Drapkina O.M., Vasilyeva L.E. Debatable points of using angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists in patients with COVID-19. Cardiovascular Therapy and Prevention. 2020;19(3):2580. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2580

Views: 4593


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)