Preview

Cardiovascular Therapy and Prevention

Advanced search

Collection and storage of DNA-containing biomaterial and isolated DNA

https://doi.org/10.15829/1728-8800-2020-2730

Abstract

The advances of biomedicine include the new technologies, diagnosis and treatment techniques, as well as the practical use of new types of biological targets, in particular, nucleic acids. Genomic deoxyribonucleic acid (DNA), extracellular DNA (exDNA) and microbiome DNA obtained from different types of samples (tissues, blood and its derivatives, feces, etc.) are used as objects of genetic research. The use of new technologies for DNA analysis required the development of standardized methods for processing biological samples in order to obtain high-quality DNA samples. The research uses various methods for collecting, preparing samples and storing various DNA-containing biomaterials and isolated DNA, as well as methods for assessing the quality of samples and biobank standards. It is obvious that the use of uniform standards will allow large-scale genetic research on the basis of biobanks and research laboratories. Specialists from professional organizations such as International Society for Biological and Environmental Repositories (ISBER), Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), European, Middle Eastern & African Society for Biopreservationa and Biobanking (ESBB) and the Russian National Association of Biobanks and Biobanking Professionals.

About the Authors

Yu. V. Doludin
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


A. S. Limonova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


V. A. Kozlova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


A. I. Efimova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


A. L. Borisova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


M. S. Pokrovskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


References

1. Lappalainen T, Scott AJ, Brandt M, et al. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019;177:70–84. doi:10.1016/j.cell.2019.02.032.

2. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–326. doi:10.1038/nature14192.

3. Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–548. doi:10.1038/nrclinonc.2017.14.

4. Hoffmann AR, Proctor LM, Surette MG, et al. The Microbiome: The Trillions of Microorganisms That Maintain Health and Cause Disease in Humans and Companion Animals. Vet Pathol. 2016;53:10–21. doi:10.1177/0300985815595517.

5. Liang D, Leung RKK, Guan W, et al. Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018. p. 3. doi:10.1186/s13099-018-0230-4.

6. Anhê FF, Varin T V., Le Barz M, et al. Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Curr Obes Rep. 2015;4:389–400. doi:10.1007/s13679-015-0172-9.

7. Carding S, Verbeke K, Vipond DT, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Heal Dis. 2015;26. doi:10.3402/mehd.v26.26191.

8. Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin Immunol. 2017;32:25–34. doi:10.1016/j.smim.2017.08.001.

9. Drapkina OM, Kaburova AN. Gut microbiota composition and metabolites as the new determinants of cardiovascular pathology development. Ration Pharmacother Cardiol. 2020;16:277–285. (In Russ.) doi:10.20996/1819-6446-2020-04-02.

10. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: Past, present and future. Nature. 2017;550:345–353. doi:10.1038/nature24286.

11. Doludin Y V., Borisova AL, Pokrovskaya MS, et al. Current best practices and biobanking recommendations. Russ Clin Lab Diagnostics. 2019;64:769–776. (In Russ.) Дdoi:10.18821/0869-2084-2019-64-12-769-776.

12. Anisimov S.V., Glotov A.S., Granstrem O.K. et al. Biobanks and biomedical progress. St.Petersburg: Svoe izdatel'stvo. 2018; 86. (In Russ.)

13. Anisimov S V., Meshkov AN, Glotov AS, et al. National Association of Biobanks and Biobanking Specialists: New Community for Promoting Biobanking Ideas and Projects in Russia. Biopreserv Biobank. 2020;00. doi:10.1089/bio.2020.0049.

14. Nasarabadi S, Hogan M, Nelson J. Biobanking in Precision Medicine. Curr Pharmacol Reports. 2018;4:91–101. doi:10.1007/s40495-018-0123-8.

15. Gillespie K, Luft H, Hernandez Y, et al. Patient Views on the Use of Personal Health Information and Biological Samples for Biobank Research. J Patient-Centered Res Rev. 2017;4:171. doi:10.17294/2330-0698.1516.

16. Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214–223. doi:10.1016/j.jclinepi.2015.09.016.

17. Chen WC, Kerr R, May A, et al. The Integrity and Yield of Genomic DNA Isolated from Whole Blood Following Long-Term Storage at -30°C. Biopreserv Biobank. 2018;16:106–113. doi:10.1089/bio.2017.0050.

18. Bulla A, De Witt B, Ammerlaan W, et al. Blood DNA Yield but Not Integrity or Methylation Is Impacted after Long-Term Storage. Biopreserv Biobank. 2016;14:29–38. doi:10.1089/bio.2015.0045.

19. Björkesten J, Enroth S, Shen Q, et al. Stability of Proteins in Dried Blood Spot Biobanks. Mol Cell Proteomics. 2017;16:1286–1296. doi:10.1074/mcp.RA117.000015.

20. Ferro P, Ortega-Pinazo J, Martínez B, et al. On the Use of Buffy or Whole Blood for Obtaining DNA of High Quality and Functionality: What Is the Best Option? Biopreserv Biobank. 2019;17:577–582. doi:10.1089/bio.2019.0024.

21. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi:10.1038/s41586-018-0579-z.

22. Bronkhorst AJ, Aucamp J, Pretorius PJ. Cell-free DNA: Preanalytical variables. Clin Chim Acta. 2015;450:243–253. doi:10.1016/j.cca.2015.08.028.

23. Kang Q, Henry NL, Paoletti C, et al. Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem. 2016;49:1354–1360. doi:10.1016/j.clinbiochem.2016.03.012.

24. Meddeb R, Pisareva E, Thierry AR. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin Chem. 2019;65:623–633. doi:10.1373/clinchem.2018.298323.

25. Rubicz R, Zhao S, Wright JL, et al. Gene expression panel predicts metastatic-lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Mol Oncol. 2017;11:140–150. doi:10.1002/1878-0261.12014.

26. Risberg B, Tsui DWY, Biggs H, et al. Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients. J Mol Diagnostics. 2018;20:883–892. doi:10.1016/j.jmoldx.2018.07.005.

27. Wu WK, Chen CC, Panyod S, et al. Optimization of fecal sample processing for microbiome study — The journey from bathroom to bench. J Formos Med Assoc. 2019;118:545–555. doi:10.1016/j.jfma.2018.02.005.

28. Fouhy F, Deane J, Rea MC, et al. The effects of freezing on faecal microbiota as determined using miseq sequencing and culture-based investigations. Neu J, editor. PLoS One. 2015;10:e0119355. doi:10.1371/journal.pone.0119355.

29. Choo JM, Leong LE, Rogers GB. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep. 2015;5:16350. doi:10.1038/srep16350.

30. Tedjo DI, Jonkers DMAE, Savelkoul PH, et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. Favia G, editor. PLoS One. 2015;10:e0126685. doi:10.1371/journal.pone.0126685.

31. Reck M, Tomasch J, Deng Z, et al. Stool metatranscriptomics: A technical guideline for mRNA stabilisation and isolation. BMC Genomics. 2015;16:494. doi:10.1186/s12864-015-1694-y.

32. Hale VL, Tan CL, Knight R, et al. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods. 2015;113:16–26. doi:10.1016/j.mimet.2015.03.021.

33. Sinha R, Chen J, Amir A, et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol Biomarkers Prev. 2016;25:407–416. doi:10.1158/1055-9965.EPI-15-0951.

34. Abrahamson M, Hooker E, Ajami NJ, et al. Successful collection of stool samples for microbiome analyses from a large community-based population of elderly men. Contemp Clin Trials Commun. 2017;7:158–162. doi:10.1016/j.conctc.2017.07.002.

35. Anderson EL, Li W, Klitgord N, et al. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci Rep. 2016;6:31731. doi:10.1038/srep31731.

36. Jha AR, Davenport ER, Gautam Y, et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 2018;16:1–30. doi:10.1371/journal.pbio.2005396.

37. Ma Y, Chen H, Lei R, et al. Biobanking for human microbiome research: promise, risks, and ethics. Asian Bioeth Rev. 2017;9:311–324. doi:10.1007/s41649-017-0033-9.

38. Ali N, Rampazzo R de CP, Costa ADT, et al. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. Biomed Res Int. 2017;2017:1–13. doi:10.1155/2017/9306564.

39. Volckmar AL, Sültmann H, Riediger A, et al. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosom Cancer. 2018;57:123–139. doi:10.1002/gcc.22517.

40. Bag S, Saha B, Mehta O, et al. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Sci Rep. 2016;6:26775. doi:10.1038/srep26775.

41. Lim MY, Song EJ, Kim SH, et al. Comparison of DNA extraction methods for human gut microbial community profiling. Syst Appl Microbiol. 2018;41:151–157. doi:10.1016/j.syapm.2017.11.008.

42. Mackenzie BW, Waite DW, Taylor MW. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol. 2015;6:1–11. doi:10.3389/fmicb.2015.00130.

43. Gerasimidis K, Bertz M, Quince C, et al. The effect of DNA extraction methodology on gut microbiota research applications. BMC Res Notes. 2016;9:365. doi:10.1186/s13104-016-2171-7.

44. Stinson LF, Keelan JA, Payne MS. Comparison of Meconium DNA extraction methods for use in microbiome studies. Front Microbiol. 2018;9:270. doi:10.3389/fmicb.2018.00270.

45. Stadlbauer V, Leber B, Lemesch S, et al. Lactobacillus casei Shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: A randomized pilot study. Wong V, editor. PLoS One. 2015;10:e0141399. doi:10.1371/journal.pone.0141399.

46. Hamad I, Ranque S, Azhar EI, et al. Culturomics and Amplicon-based Metagenomic Approaches for the Study of Fungal Population in Human Gut Microbiota. Sci Rep. 2017;7:16788. doi:10.1038/s41598-017-17132-4.

47. Yanagi H, Tsuda A, Matsushima M, et al. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy. BMJ Open Gastroenterol. 2017;4:e000182. doi:10.1136/bmjgast-2017-000182.

48. A guide to qualify your clinical samples [Internet]. Available from: www.findmyassay.com.

49. Trigg RM, Martinson LJ, Parpart-Li S, et al. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature. Heliyon. 2018;4:e00699. doi:10.1016/j.heliyon.2018.e00699.

50. ISO 20387:2018 Biotechnology - Biobanking - General requirements for biobanking. 2018.


Supplementary files

Review

For citations:


Doludin Yu.V., Limonova A.S., Kozlova V.A., Efimova A.I., Borisova A.L., Meshkov A.N., Pokrovskaya M.S., Drapkina O.M. Collection and storage of DNA-containing biomaterial and isolated DNA. Cardiovascular Therapy and Prevention. 2020;19(6):2730. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2730

Views: 1022


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)