COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations
https://doi.org/10.15829/1728-8800-2021-2844
Abstract
Coronavirus disease 2019 (COVID-19) is a poorly understood and dangerous medical problem. COVID-19-related pulmonary vessels involvement is a complex set of interrelated pathophysiological processes associated with vascular endothelial dysfunction and accompanied by thrombosis of various localization, vasomotor disorders, severe respiratory failure, as well as pulmonary embolism (PE) resulting in chronic thromboembolic pulmonary hypertension (CTEPH). According to computed tomographic pulmonary angiography, the incidence of PE in patients with COVID-19 ranges from 23 to 30%. The aim of this work was to focus the doctors' attention on the risk of pulmonary hypertension in patients after COVID-19.
Despite the ability of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) to infect various organs and systems, the main and most serious complications are pulmonary infiltration, acute respiratory distress syndrome, acute respiratory failure and PE, which in some cases becomes the triggering mechanism for CTEPH development. The literature review presents data on main pathological abnormalities developing in target organs during COVID-19 and playing an important role in increasing the CTEPH risk. The paper describes the main methods of instrumental investigations of CTEPH and an algorithm for its use in COVID-19 survivors.
The revealed data demonstrated that the absence of obvious signs of pulmonary hypertension/CTEPH, the cardiopulmonary system abnormalities cannot be ruled out. Therefore, it seems appropriate to actively follow up COVID-19 survivors. A thoroughly, purposefully collected anamnesis, pulmonary function tests and stress echocardiography in an ambiguous clinical situation will play a leading role as they identify cardiopulmonary disorders and provide the doctor with basic information for further planning of patient management.
About the Authors
E. KobelevRussian Federation
Novosibirsk.
T. A. Bergen
Russian Federation
Novosibirsk.
A. R. Tarkova
Russian Federation
Novosibirsk.
O. Ya. Vasiltseva
Russian Federation
Novosibirsk.
O. V. Kamenskaya
Russian Federation
Novosibirsk.
V. Yu. Usov
Russian Federation
Tomsk.
A. M. Chernyavsky
Russian Federation
Novosibirsk.
References
1. Bernstein KE, Khan Z, Giani JF, et al. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14(5):325-36. doi:10.1038/nrneph.2018.15.
2. Recinos A 3rd, LeJeune WS, Sun H, et al. Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice. Atherosclerosis. 2007;194(1):125-33. doi:10.1016/j.atherosclerosis.2006.10.013.
3. Yamamoto S, Yancey PG, Zuo Y, et al. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(12):2856-64. doi:10.1161/ATVBAHA.111.237198.
4. Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res. 2002;69(1):94-103. doi:10.1002/jnr.10253.
5. Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun Rev. 2020;19(6):102536. doi:10.1016/j.autrev.2020.102536.
6. Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: A Preliminary Study From 56 COVID-19 Patients. Clin Infect Dis. 2020;71(16):2249-51. doi:10.1093/cid/ciaa460.
7. Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;50(3):499-511. doi:10.1007/s11239-020-02230-4.
8. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1):360. doi:10.1186/s13054-020-03077-0.
9. Chan NC, Weitz JI. COVID-19 coagulopathy, thrombosis, and bleeding. Blood. 2020;136(4):381-3. doi:10.1182/blood.2020007335.
10. Grillet F, Behr J, Calame P, et al. Acute Pulmonary Embolism Associated with COVID-19 Pneumonia Detected with Pulmonary CT Angiography. Radiology. 2020;296(3):E186-8. doi:10.1148/radiol.2020201544.
11. Leonard-Lorant I, Delabranche X, Severac F, et al. Acute Pulmonary Embolism in Patients with COVID-19 at CT Angiography and Relationship to d-Dimer Levels. Radiology. 2020;296(3):E189-91. doi:10.1148/radiol.2020201561.
12. Poyiadji N, Cormier P, Patel PY, et al. Acute Pulmonary Embolism and COVID-19. Radiology. 2020;297(3):E335-E338. doi:10.1148/radiol.2020201955.
13. Rizzo P, Vieceli Dalla Sega F, Fortini F, et al. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol. 2020;115(3):31. doi:10.1007/s00395-020-0791-5.
14. Abbasi SH, Boroumand MA. Expanded network of inflammatory markers of atherogenesis: where are we now? Open Cardiovasc Med J. 2010;4:38-44. doi:10.2174/1874192401004020038.
15. Guerin L, Couturaud F, Parent F, et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb Haemost. 2014;112(3):598-605. doi:10.1160/TH13-07-0538.
16. Bompard F, Monnier H, Saab I, et al. Pulmonary embolism in patients with COVID-19 pneumonia. Eur Respir J. 2020;56(1):2001365. doi:10.1183/13993003.01365-2020.
17. Chazova IE, Avdeev SN, Tsareva NA, et al. Clinical guidelines for the diagnosis and treatment of pulmonary hypertension. Terapevticheskii arkhiv. 2014;86(9):4-23. (In Russ.)
18. Galie N, Humbert M, Vachiery JL, et al.; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2016;37(1):67-119. doi:10.1093/eurheartj/ehv317.
19. Tsareva NA. Updated classification and diagnosis of pulmonary hypertension. Consilium Medicum. 2017;19(3):66-71. (In Russ.)
20. Brown K, Gutierrez AJ, Mohammed TL, et al. Expert Panel on Thoracic Imaging. ACR Appropriateness Criteria® pulmonary hypertension. J Thorac Imaging. 2013;28(4):W57-60. doi:10.1097/RTI.0b013e31829191b5.
21. Chazova IE, Martynyuk TV, Valieva ZS, et al. Eurasian clinical guidelines on diagnosis and treatment of pulmonary hypertension. Eurasian heart journal. 2020;(1):78-122. (In Russ.)
22. Greiner S, Jud A, Aurich M, et al. Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J Am Heart Assoc. 2014;3(4):e001103. doi:10.1161/JAHA.114.001103.
23. Reesink HJ, van der Plas MN, Verhey NE, et al. Six-minute walk distance as parameter of functional outcome after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg. 2007;133(2):510-6. doi:10.1016/j.jtcvs.2006.10.020.
24. Guazzi M, Arena R, Halle M, et al. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation. 2016;133(24):e694-711. doi:10.1161/CIR.0000000000000406.
25. Xi Q, Zhao Z, Liu Z, et al. The lowest VE/VCO2 ratio best identifies chronic thromboembolic pulmonary hypertension. Thromb Res. 2014;134(6):1208-13. doi:10.1016/j.thromres.2014.09.025.
26. Loginova IYu, Kamenskaya OV, Chernyavskiy AM, et al. Chronic obstructive pulmonary disease as a predictor of poor outcome of surgery for chronic thromboembolic pulmonary hypertension. Pulmonologiya. 2016;26(6):694-700. (In Russ.).
27. Tunariu N, Gibbs SJ, Win Z, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007;48(5):680-4. doi:10.2967/jnumed.106.039438.
28. Lisbona R, Kreisman H, Novales-Diaz J, et al. Perfusion lung scanning: differentiation of primary from thromboembolic pulmonary hypertension. AJR Am J Roentgenol. 1985;144(1):27-30. doi:10.2214/ajr.144.1.27.
29. Powe JE, Palevsky HI, McCarthy KE, et al. Pulmonary arterial hypertension: value of perfusion scintigraphy. Radiology. 1987;164(3):727-30. doi:10.1148/radiology.164.3.3615869.
30. Freeman LM. Don't bury the V/Q scan: it's as good as multidetector CT angiograms with a lot less radiation exposure. J Nucl Med. 2008;49(1):5-8. doi:10.2967/jnumed.107.048066.
31. Ryan KL, Fedullo PF, Davis GB, et al. Perfusion scan findings understate the severity of angiographic and hemodynamic compromise in chronic thromboembolic pulmonary hypertension. Chest. 1988;93(6):1180-5. doi:10.1378/chest.93.6.1180.
32. Kerr KM. Pulmonary artery sarcoma masquerading as chronic thromboembolic pulmonary hypertension. Nat Clin Pract Cardiovasc Med. 2005;2(2):108-12; quiz 113. doi:10.1038/ncpcardio0118.
33. Rossi SE, McAdams HP, Rosado-de-Christenson ML, et al. Fibrosing mediastinitis. Radiographics. 2001;21(3):737-57. doi:10.1148/radiographics.21.3.g01ma17737.
34. Fazzi P, Borso E, Albertelli R, et al. Comparative performance of two inhaler systems to assess distribution of convective ventilation by 99mTc-labeled aerosol scintigraphy in patients with airway obstruction. Q J Nucl Med Mol Imaging. 2009;53(4):428-36.
35. Moradi F, Morris TA, Hoh CK. Perfusion Scintigraphy in Diagnosis and Management of Thromboembolic Pulmonary Hypertension. Radiographics. 2019;39(1):169-85. doi:10.1148/rg.2019180074.
36. Nakazawa T, Watanabe Y, Hori Y, et al. Lung perfused blood volume images with dual-energy computed tomography for chronic thromboembolic pulmonary hypertension: correlation to scintigraphy with single-photon emission computed tomography. J Comput Assist Tomogr. 2011;35(5):590-5. doi:10.1097/RCT.0b013e318224e227.
37. Mershina EA, Sinitsyn VE. The role of radiation diagnostic techniques in the diagnosis of chronic thromboembolic pulmonary hypertension. Aterotromboz = Atherothrombosis. 2016;(1):16-25. (In Russ.)
38. Chazova IE, Martynyuk TV. Clinical guidelines for the diagnosis and treatment of chronic thromboembolic pulmonary hypertension (Part 1). Terapevticheskii arkhiv. 2016;88(9):90-101. (In Russ.)
39. van Rossum AB, Pattynama PM, Ton ER, et al. Pulmonary embolism: validation of spiral CT angiography in 149 patients. Radiology. 1996;201(2):467-70. doi:10.1148/radiology.201.2.8888242.
Supplementary files
Review
For citations:
Kobelev E., Bergen T.A., Tarkova A.R., Vasiltseva O.Ya., Kamenskaya O.V., Usov V.Yu., Chernyavsky A.M. COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations. Cardiovascular Therapy and Prevention. 2021;20(5):2844. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2844