Preview

Cardiovascular Therapy and Prevention

Advanced search

Influence of preanalytical variables on the quality of cell-free DNA. Biobanking of cell-free DNA material

https://doi.org/10.15829/1728-8800-2021-3114

Abstract

The search for early disease markers and the development of diagnostic systems has recently been expanding within genomics. Genomic deoxyribonucleic acid (DNA), cell-free DNA (cfDNA) and microbiome DNA obtained from different types of samples (tissues, blood and its derivatives, feces, etc.) are used as objects of genetic research. It has been shown that cfDNA that enters the bloodstream, in particular, as a result of apoptosis, necrosis, active tumor secretion and metastasis, is of great importance for studying molecular mechanisms of the pathological process and application in clinical practice. Circulating nucleic acid analysis can be used to monitor response to treatment, assess drug resistance, and quantify minimal residual disease. The review article reflects the following information about the biomaterial: source of cfDNA, methods of cfDNA isolation, storage and use for the diagnosis of certain diseases. Cell-free DNA can be present in biological fluids such as blood, urine, saliva, synovial and cerebrospinal fluid. In most cases, cfDNA is isolated from blood derivatives (serum and plasma), while it is most correct to use blood plasma for cfDNA isolation. Optimal and economically justifiable is the use of ethylenediaminetetra-acetic acid tubes for taking blood and obtaining plasma with subsequent cfDNA isolation. There is evidence that the optimal shelf life in an ethylenediaminetetra-acetic acid tube from the moment of blood sampling to subsequent isolation is a 2-hour interval. After centrifugation, cfDNA in plasma (or serum) can be stored for a long time at a temperature of -80O C. Storage at -20O C is undesirable, since DNA fragmentation increases.

About the Authors

V. A. Kondratskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. S. Pokrovskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



Yu. V. Doludin
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. L. Borisova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. S. Limonova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



А. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Muhanna N, Eu D, Chan HL, et al. Cell-free DNA and circulating tumor cell kinetics in a pre-clinical head and neck Cancer model undergoing radiation therapy. BMC Cancer. 2021;21:1075. doi:10.1186/s12885-021-08791-8.

2. Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med. 2018;379(18):1754-65. doi:10.1056/NEJMra1706174.

3. Moati E, Taly V, Garinet S. Role of Circulating Tumor DNA in Gastrointestinal Cancers: Current Knowledge and Perspectives. Cancers (Basel). 2021; 13(19):4743. doi:10.3390/cancers13194743.

4. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531-48. doi:10.1038/nrclinonc.2017.14.

5. Chabon JJ, Simmons AD, Lovejoy AF, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;10(7):11815. doi:10.1038/ncomms11815.

6. Parikh AR, Leshchiner I, Elagina L, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25(9):1415-21. doi:10.1038/s41591-019-0561-9.

7. Holdenrieder S, Burges A, Reich O, et al. DNA integrity in plasma and serum of patients with malignant and benign diseases. Ann NY Acad Sci. 2008;1137:162-70. doi: 10.1196/annals.1448.013.

8. Wang BG, Huang HY, Chen YC, et al. Increased plasma DNA integrity in cancer patients. Cancer Res. 2003;63(14):3966-8.

9. Jiang WW, Zahurak M, Goldenberg D, et al. Increased plasma DNA integrity index in head and neck cancer patients. Int J Cancer. 2006;119(11):2673-6. doi:10.1002/ijc.22250.

10. Lee TH, Montalvo L, Chrebtow V, Busch MP. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 2001;41(2):276-82. doi: 10.1046/j.1537-2995.2001.41020276.x.

11. Steinman CR. Free DNA in serum and plasma from normal adults. J Clin Invest. 1975;56(2):512-5. doi:10.1172/JCI108118.

12. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol. 2006;24(26):4270-6. doi:10.1200/JCO.2006.05.9493.

13. Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 200;48(3):421-7.

14. Beutler E, Gelbart T, Kuhl W. Interference of heparin with the polymerase chain reaction. Biotechniques 1990;9:166.

15. Page K, Guttery DS, Zahra N, et al. Influence of Plasma Processing on Recovery and Analysis of Circulating Nucleic Acids. Otsuka M. PLoS One. 2013;8(10): e77963.doi:10.1371/journal.pone.0077963.

16. Kang Q, Henry NL, Paoletti C, et al. Comparative analysis of circulating tumor DNA stability in K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem. 2016;49(18):1354-60. doi:10.1016/j.clinbiochem.2016.03.012.

17. 17 Cell-Free DNA BCT. https://www.streck.com/products/ stabilization/cell-free-dna-bct/. (10 августа 2021).

18. Doludin YuV, Limonova AS, Kozlova VA, et al. Collection and storage of DNA-containing biomaterial and isolated DNA. Cardiovascular Therapy and Prevention. 2020;19(6):2730. (In Russ.) doi:10.15829/1728-8800-2020-2730.

19. Lui YYN, Chik K-W, Lo YMD. Does centrifugation cause the ex vivo release of DNA from blood cells? Clin Chem. 2002;48:2074-6.

20. Volckmar AL, Sultmann H, Riediger A, et al. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosom Cancer. 2018;57(3):123-39. doi:10.1002/gcc.22517.

21. Page K, Powles T, Slade MJ, et al. The Importance of Careful Blood Processing in Isolation of Cell-Free DNA. Ann NY Acad Sci. 2006;1075(1):313-7. doi:10.1196/annals.1368.042.

22. El Messaoudi S, Rolet F, Mouliere F, et al. Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta. 2013;424:222-30. doi:10.1590/s2175-97902018000117368.

23. Xue X, Teare MD, Holen I, et al. Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clin Chim Acta. 2009;404:100-4. doi:10.1016/j.cca.2009.02.018.

24. Board RE, Williams VS, Knight L, et al. Isolation and extraction of circulating tumor 575 DNA from patients with small cell lung cancer. Ann NY Acad Sci. 2008;1137:98-107 doi:10.1196/ annals.1448.020.

25. Chan KC, Yeung SW, Lui WB, et al. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem. 2005;51:781-4. doi 10.1373/clinchem.2004.046219.

26. Risberg B, Tsui, DW, Biggs, H, et al. Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn. 2018;20(6):883-92. doi:10.1016/j.jmoldx.2018.07005.

27. 27 Chen Z, Zhang S, Li C, et al. Comprehensive Evaluation of the Factors Affecting Plasma Circulating Cell-Free DNA Levels and Their Application in Diagnosing Nonsmall Cell Lung Cancer. Genet Test Mol Biomarkers. 2019;23(4):270-6. doi: 10.1089/gtmb.2018.0106.

28. Dewitte A, Tanga A, Villeneuve J, et al. New frontiers for platelet CD154. Exp Hematol Oncol. 2015;4(6):1-13. doi:10.1186/s40164-015-0001-626.

29. Norton SE, Luna KK, Lechner JM, et al. A New Blood Collection Device Minimizes Cellular DNA Release During Sample Storage and Shipping When Compared to a Standard Device. J Clin Lab Anal. 2013;27(4):305-11. doi:10.1002/jcla.21603.

30. Bronkhorst AJ, Aucamp J, Pretorius PJ. Cell-free DNA: Preanalytical variables. Clin Chim Acta. 2015;450:243-53. doi:10.1016/j.cca.2015.08.028.

31. Sozzi G, Roz L, Conte D, et al. Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst. 2005;97(24):1848-50. doi:10.1093/jnci/dji432.

32. Meddeb R, Pisareva E, Thierry AR. Guidelines for the Preanalytical Conditions for Analyzing Circulating Cell-Free DNA. Clin Chem. 2019;65(5):623-33. doi: 10.1373/clinchem.2018.298323.

33. Ali N, Rampazzo R de CP, Costa ADT, et al. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. Biomed Res Int. 2017;2017:1-13. doi:10.1155/2017/9306564.

34. Sorber L, Zwaenepoel K, Deschoolmeester V, et al. A Comparison of Cell-Free DNA Isolation Kits. J Mol Diagnostics. 2017; 19(1):162-8. doi:10.1016/j.jmoldx.2016.09.009.

35. Wang S, An T, Wang J, et al. Potential Clinical Significance of a Plasma-Based KRAS Mutation Analysis in Patients with Advanced Non-Small Cell Lung Cancer. Clin Cancer Res. 2010;16(4):1324-30. doi:10.1158/1078-0432.CCR-09-2672.

36. Devonshire AS, Whale AS, Gutteridge A, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem. 2014;406(26):6499-512. doi:10.1007/s00216-014-7835-3.

37. 37 Melkonyan HS, Feaver WJ, Meyer E, et al. Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests. Ann NY Acad Sci. 2008;1137(1):73-81. doi:10.1196/annals.1448.015.

38. Yao W, Mei C, Nan X, et al. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene. 2016;590(1): 142-8. doi: 10.1016/j.gene.2016.06.033.

39. Pan W, Gu W, Nagpal S, et al. Brain Tumor Mutations Detected in Cerebral Spinal Fluid. Clin Chem. 2015;61(3):514-22. doi:10.1373/clinchem.2014.235457.

40. Asano H, Toyooka S, Tokumo M, et al. Detection of EGFR Gene Mutation in Lung Cancer by Mutant-Enriched Polymerase Chain Reaction Assay. Clin Cancer Res. 2006;12(1):43-8. doi:10.1158/1078-0432.CCR-05-0934.


Supplementary files

Review

For citations:


Kondratskaya V.A., Pokrovskaya M.S., Doludin Yu.V., Borisova A.L., Limonova A.S., Meshkov А.N., Drapkina O.M. Influence of preanalytical variables on the quality of cell-free DNA. Biobanking of cell-free DNA material. Cardiovascular Therapy and Prevention. 2021;20(8):3114. (In Russ.) https://doi.org/10.15829/1728-8800-2021-3114

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)