Preview

Cardiovascular Therapy and Prevention

Advanced search

Circulating biological markers of obesity: towards a systems approach

https://doi.org/10.15829/1728-8800-2023-3551

Abstract

The pathological processes associated with obesity are based on impaired energy homeostasis, as well as excessive endocrine and paracrine activity of adipose tissue, leading to inflammation and hormonal imbalance, which is accompanied by the secretion of a wide range of compounds affecting key body processes. One of the indirect methods for assessing the adipose tissue abnormalities is the measurement of the concentration of cytokines, growth factors, as well as a class of specific compounds — adipokines specific to adipose tissue. The study of circulating biomarkers makes it possible to assess their association with the risk of complications, metabolic obesity, and other clinical and functional features. Such markers include adipokines (leptin, adiponectin, apelin, resistin, omentin, visfatin, chemerin, lipocalin, etc.), inflammation biomarkers, heat shock proteins, which are discussed in detail in this review in the context of their use in obesity and concomitant diseases.

About the Authors

Yu. S. Timofeev
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. N. Dzhioeva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Drapkina OM, Samorodskaia IV, Starinskaia MA, et al. Obesity: evaluation and management of patients. M.: NMRC TPM Russian Ministry of Health, 2021. p. 174. (In Russ.)

2. Schulze MB. Metabolic health in normal-weight and obese individuals. Diabetologia. 2019;62(4):558-66. doi:10.1007/s00125-018-4787-8.

3. Kouvari M, Panagiotakos DB, Yannakoulia M, et al. Transition from metabolically benign to metabolically unhealthy obesity and 10-year cardiovascular disease incidence: The ATTICA cohort study. Metabolism. 2019;93:18-24. doi:10.1016/j.metabol.2019.01.003.

4. Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507-24. doi:10.1038/s41574-019-0230-6.

5. Paillaud E, Poisson J, Granier C, et al. Serum Leptin Levels, Nutritional Status, and the Risk of Healthcare-Associated Infections in Hospitalized Older Adults. Nutrients. 2022;14(1):226. doi:10.3390/nu14010226.

6. Matosyan KA, Oranskaya AN, Gurevich KG, et al. Biochemical markers of obesity in the 18-25-year-old patients. Cardiovascular Therapy and Prevention. 2017;16(5):34-9. (In Russ.) doi:10.15829/1728-8800-2017-5-34-39.

7. Troshina EA, Komshilova KA, Ershova EV, et al. Obesity (essential laboratory diagnostic tests). Guidelines for general medical practitioners. Consilium Medicum. 2019;21(12):48-50. (In Russ.) doi:10.26442/20751753.2019.12.190680.

8. Kornoukhova LA, Denisov NL, Marchenko VN, et al. Early dia­gnosis of hepatic metabolic disorders in obese patients. Gastroenterology. 2019;8(163):35-43. (In Russ.) doi:10.31550/1727-2378-2019-163-8-35-43.

9. Almabhouh FA, Md Mokhtar AH, Malik IA, et al. Leptin and reproductive dysfunction in obese men. Andrologia. 2020;52(1):e13433. doi:10.1111/and.13433.

10. Zulfania Khan A, Ghaffar T, et al. Correlation between serum leptin level and Body mass index (BMI) in patients with type 2 diabetes Mellitus. J Pak Med Assoc. 2020;70(1):3-6. doi:10.5455/JPMA.301135.

11. Qin Z, Yang Q, Yang M, et al. Serum leptin concentration can predict cardiovascular outcomes and all-cause death in maintenance hemodialysis patients. Clin Chim Acta. 2021;520:87-94. doi:10.1016/j.cca.2021.06.003.

12. Peng Y, Yang H, Song J, et al. Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2022;13:845165. doi:10.3389/fendo.2022.845165.

13. Alatas SE, Yavuz Dogu S, Kilic D, et al. Comparison of serum adiponectin and osteopontin levels along with metabolic risk factors between obese and lean women with and without PCOS. Endokrynol Pol. 2020;71(6):497-503. doi:10.5603/EP.a2020.0074.

14. Kurose S, Onishi K, Takao N, et al. Association of serum adipo­nectin and myostatin levels with skeletal muscle in patients with obesity: A cross-sectional study. PLoS One. 2021;16(1):e0245678. doi:10.1371/journal.pone.0245678.

15. Zhang Y, Peltonen M, Andersson-Assarsson JC, et al. Elevated adiponectin predicts the development of rheumatoid arthritis in subjects with obesity. Scand J Rheumatol. 2020;49(6):452-60. doi:10.1080/03009742.2020.1753808.

16. Tanyanskiy DA, Shavva VS, Dizhe EB, et al. Adiponectin stimulates apolipoprotein A-1 gene expression in HEPG2 cells via AMPK, PPAR-alpha, and LXR signalling mechanisms. Biochemistry. 2022;87(11):1700-8. (In Russ.) doi:10.31857/S0320972522110148.

17. El Wakeel MA, El-Kassas GM, Kamhawy AH, et al. Serum Apelin and Obesity-Related Complications in Egyptian Children. Open Access Maced J Med Sci. 2018;6(8):1354-8. doi:10.3889/oamjms.2018.312.

18. Yin C, Zhang H, Zhang M, et al. Adropin and apelin-12 efficiently predict metabolic syndrome in obese children. Pediatr Diabetes. 2020;21(7):1132-9. doi:10.1111/pedi.13101.

19. Listopad OV, Bazhenova EA, Ionin VA, et al. Apelin and heart remo­deling in patients with abdominal obesity. The Scientific Notes of the Pavlov University. 2015;22(2):17-9. (In Russ.) doi:10.24884/1607-4181-2015-22-2-17-19.

20. Kollari E, Zografou I, Sampanis C, et al. Serum adipokine levels in patients with type 1 diabetes are associated with degree of obesity but only resistin is independently associated with atherosclerosis markers. Hormones (Athens). 2022;21(1):91-101. doi:10.1007/s42000-021-00328-9.

21. Gussaova SS, Bobkova IN, Stavrovskaya EV, et al. Serum level of resistin and insulin resistance in patients with morbid obesity. Nephrology (Saint-Petersburg) 2019; 23 (supplement 1):78. (In Russ.) Гуссаова С. С., Бобкова И. Н., Ставровская Е. В. и др. Уровень сывороточного резистина и инсулинорезистентность у больных морбидным ожирением. Нефрология. 2019; 23 (приложение 1):78. doi:10.36485/1561-6274-2019-23-5-75-88.

22. Zengi S, Zengi O, Kirankaya A, et al. Serum omentin-1 levels in obese children. J Pediatr Endocrinol Metab. 2019;32(3):247-51. doi:10.1515/jpem-2018-0231.

23. Xu T, Li Y, Su Y, et al. Serum omentin-1 and risk of one-year mortality in patients with ischemic stroke. Clin Chim Acta. 2020;505:167-71. doi:10.1016/j.cca.2020.03.007.

24. Draganova AS, Polyakova EA, Kolodina DA, et al. Concentration omentin-1 in the serum of patients with coronary heart disease. Translational Medicine. 2019;6(6):5-13. (In Russ.) doi:10.18705/2311-4495-2019-6-6-5-13.

25. Elkabany ZA, Hamza RT, Ismail EAR, et al. Serum visfatin level as a noninvasive marker for nonalcoholic fatty liver disease in children and adolescents with obesity: relation to transient elastography with controlled attenuation parameter. Eur J Gastroenterol Hepatol. 2020;32(8):1008-16. doi:10.1097/MEG.0000000000001608.

26. Radzicka-Mularczyk S, Zaborowski MP, Brązert J, et al. Serum visfatin as a metabolic biomarker in obese patients with gestational diabetes mellitus. Minerva Endocrinol (Torino). 2021;46(4):396-405. doi:10.23736/S2724-6507.20.03280-0.

27. Rowicka G, Dyląg H, Chełchowska M, et al. Serum Calprotectin and Chemerin Concentrations as Markers of Low-Grade Inflammation in Prepubertal Children with Obesity. Int J Environ Res Public Health. 2020;17(20):7575. doi:10.3390/ijerph17207575.

28. Mosialou I, Shikhel S, Luo N, et al. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J Exp Med. 2020;217(10):e20191261. doi:10.1084/jem.20191261.

29. Shulkina SG, Schekotov VV, Smirnova EN, et al. Vascular Endothelial Growth Factor and lipocalin-2 as markers of early nephron damage in patients with hypertension and obesity. Sovremennye tehnologii v medicine. 2016;8(1):48-52. (In Russ.) doi:10.17691/stm2016.8.1.20.

30. Drapkina OM, Deeva TA. Prognostic significance of galectin-3 measurement in patients with metabolic syndrome and non-alcoholic fatty liver disease. Cardiovascular Therapy and Prevention. 2015;14(5):40-7. (In Russ.) doi:10.15829/1728-8800-2015-5-40-47.

31. Nimptsch K, Konigorski S, Pischon T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism. 2019;92:61-70. doi:10.1016/j.metabol.2018.12.006.

32. Vandebergh M, Becelaere S. CHARGE Inflammation Working Group; Dubois B, Goris A. Body Mass Index, Interleukin-6 Signaling and Multiple Sclerosis: A Mendelian Randomization Study. Front Immunol. 2022;13:834644. doi:10.3389/fimmu.2022.834644.

33. Alissa EM, Algarni SA, Khaffji AJ, et al. Impact of interlukin-6 on central obesity measures in women with polycystic ovarian syndrome. J Obstet Gynaecol. 2020;40(8):1133-7. doi:10.1080/01443615.2019.1697219.

34. Pirowska M, Podolec K, Lipko-Godlewska S, et al. Level of inflammatory cytokines tumour necrosis factor α, interleukins 12, 23 and 17 in patients with psoriasis in the context of metabolic syndrome. Postepy dermatologii i alergologii. 2019;36(1):70-5. doi:10.5114/ada.2018.73136.

35. Alzamil H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J Obes. 2020;2020:5076858. doi:10.1155/2020/5076858.

36. Lazar-Poloczek E, Romuk E, Jachec W, et al. Levels of TNF-α and Soluble TNF Receptors in Normal-Weight, Overweight and Obese Patients with Dilated Non-Ischemic Cardiomyopathy: Does Anti-TNF Therapy Still Have Potential to Be Used in Heart Failure Depending on BMI? Biomedicines. 2022;10(11):2959. doi:10.3390/biomedicines10112959.

37. Gopal DM, Ayalon N, Wang YC, et al. Galectin-3 Is Associated With Stage B Metabolic Heart Disease and Pulmonary Hypertension in Young Obese Patients. J Am Heart Assoc. 2019;8(7):e011100. doi:10.1161/JAHA.118.011100.

38. Podzolkov VI, Tarzimanova AI, Gataulin RG, et al. The role of obesity in the development of atrial fibrillation: current problem status. Cardiovascular Therapy and Prevention. 2019;18(4):109-14. (In Russ.) doi:10.15829/1728-8800-2019-4-109-114.

39. Ponasenko OA, Gankovskaya LV, Svitich OA. The role of the heat shock protein 70 in the pathogenesis of cardiovascular pathology. Medical Immunology (Russia). 2019;21(2):201-8. (In Russ.) doi:10.15789/1563-0625-2019-2-201-208.

40. Sell H, Poitou C, Habich C, et al. Heat Shock Protein 60 in Obesity: Effect of Bariatric Surgery and its Relation to Inflammation and Cardiovascular Risk. Obesity (Silver Spring). 2017;25(12):2108-14. doi:10.1002/oby.22014.

41. Yildirim O, Tatar E. The Roles of Heat Shock Protein-60 and 70 and Inflammation in Obesity-Related Kidney Disease. Cureus. 2022;14(9):e28675. doi:10.7759/cureus.28675.


Supplementary files

What is known already about the subject?

  • Currently, laboratory diagnosis of obesity is limited to complete blood count and biochemical tests, the study of hormones and specific proteins.
  • Excessive dynamic endocrine and paracrine activity of adipose tissue leads to a number of diseases asso­ciated with obesity.

What might this study add?

  • Adipokines, compounds specific to adipose tissue, are being studied as promising biomarkers of obe­sity.
  • Inflammatory biomarkers, including cytokines, are significant biochemical factors in obesity-associated diseases.
  • Heat shock proteins are a poorly studied group of bio­markers, the study of which can complement the range of non-invasive laboratory diagnostic methods for obesity.

Review

For citations:


Timofeev Yu.S., Dzhioeva O.N., Drapkina O.M. Circulating biological markers of obesity: towards a systems approach. Cardiovascular Therapy and Prevention. 2023;22(4):3551. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3551

Views: 1324


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)