Preview

Cardiovascular Therapy and Prevention

Advanced search

Specifics of creating clinical abstract of biospecimens

https://doi.org/10.15829/1728-8800-2023-3855

Abstract

One technology that helps overcome the problem of low research reproducibility is biobanking, which involves maintaining strict quality standards at all stages. In addition to data on the biosample (detailed documentation on sampling, transportation, preparation and subsequent storage), one of the key points is the availability of information about the donor (patient). The aim of this article was to analyze creating clinical abstract of biospecimens, combining data from various biobanks and assessing the possibilities of electronic medical records and other modern technologies for this. The search for publications was carried out in the PUBMED, eLIBRARY.RU, RSCI databases. One approach to creating a clinical description is the targeted collection of information by a specially trained employee. Primary information is most often taken from the individual records of the study participant, which are developed and approved when planning work. An alternative method is the use of electronic medical records and other documents that collect information during the assessment and treatment of patients. There are also mixed types of clinical data collection, a prime example of which is the UK Biobank. Completeness, structure, and standardization are essential characteristics of clinical description associated with biospecimens. Various standards are currently being developed to unify clinical description, making biobanks and collections more available to external researchers and organizations, which is necessary for collaboration and more efficient use of stored biospecimens. Harmonization of clinical description methodology between different biobanks open up broad boundaries for large- scale research within personalized and translational medicine.

About the Authors

O. V. Kopylova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. I. Ershova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. L. Borisova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



V. A. Metelskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Astrin JJ, Betsou F. Trends in Biobanking: A Bibliometric Over view. Biopreserv Biobank. 2016;14(1):65­74. doi:10.1089/bio.2015.0019.

2. Mikhailova AA, Nasykhova YA, Muravyov AI, et al. Towards the creation of a unified glossary of Russian biobanks. Cardiovascular Therapy and Prevention. 2020;19(6):2710. (In Russ.) doi:10.15829/1728­8800­2020­2710.

3. Pokrovskaya MS, Sivakova OV, Efimova IA, et al. Biobanking as a necessary tool for research in the field of personalized medicine in the scientific medical center. Per Med. 2019;16(6):501­9. doi:10.2217/pme­2019­0049.

4. Begley CG, Ellis LM. Raise standards for preclinical cancer research. Nature. 2012;483(7391):531­3. doi:10.1038/483531a.

5. Kopylova OV, Ershova AI, Efimova IA, et al. Electronic medical records and biobanking. Cardiovascular Therapy and Prevention. 2022;21(11):3425. (In Russ.) doi:10.15829/1728­8800­2022­3425.

6. Manolio TA. Genomewide Association Studies and Assessment of the Risk of Disease. Feero WG, Guttmacher AE, eds. N Engl J Med. 2010;363(2):166­76. doi:10.1056/NEJMra0905980.

7. Bastarache L, Denny JC, Roden DM. Phenome­ Wide Association Studies. JAMA. 2022;327(1):75. doi:10.1001/jama.2021.20356.

8. Linder JE, Bastarache L, Hughey JJ, Peterson JF. The Role of Elec tronic Health Records in Advancing Genomic Medicine. Annu Rev Genomics Hum Genet. 2021;22:219­38. doi:10.1146/ annurev­ genom­121120­125204.

9. Zhu T, Wang W, Chen Y, et al. Machine Learning of Functional Connectivity to Biotype Alcohol and Nicotine Use Disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;S24519022(23)00222­7. doi:10.1016/j.bpsc.2023.08.010.

10. Wang X, Khurshid S, Choi SH, et al. Genetic Susceptibility to Atrial Fibrillation Identified via Deep Learning of 12­Lead Electrocardiograms. Circ Genomic Precis Med. 2023;16(4):3409. doi:10.1161/CIRCGEN.122.003808.

11. Bellary S, Krishnankutty B, Latha M. Basics of case report form designing in clinical research. Perspect Clin Res. 2014;5(4):159. doi:10.4103/2229­3485.140555.

12. Cowie MR, Blomster JI, Curtis LH, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017;106:1­9. doi:10.1007/s00392­016­1025­6.

13. Shalnova SA, Drapkina OМ. Contribution of the ESSE­RF study to preventive healthcare in Russia. Cardiovascular Therapy and Prevention. 2020;19(3):2602. (In Russ.) doi:10.15829/1728­8800­2020­2602.

14. Manders P, Peters TM, Siezen AE et al. A Stepwise Procedure to Define a Data Collection Framework for a Clinical Biobank. Biopreserv Biobank. 2018;16(2):138­47. doi:10.1089/BIO.2017.0084.

15. Meshkov AN, Glotov AS, Anisimov SV, et al. Biobanking: national guidelines. prepared by experts from the National Association of Biobanks and Biobanking Professionals (NASBIO). M.: Triumph, 2022. p. 308. (In Russ.) ISBN: 978­5­93673­322­2.

16. Abul­ Husn NS, Manickam K, Jones LK, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354(6319). doi:10.1126/SCIENCE.AAF7000.

17. Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013;15(10):761­71. doi:10.1038/gim.2013.72.

18. eMERGE Consortium. Lessons learned from the eMERGE Network: balancing genomics in discovery and practice. Hum Genet Genomics Adv. 2021;2(1):100018. doi:10.1016/J.XHGG.2020.100018.

19. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome­wide scan to discover gene­disease associations. Bioinformatics. 2010;26(9):1205­10. doi:10.1093/BIOINFORMATICS/BTQ126.

20. Dumitrescu L, Goodloe R, Bradford Y, et al. The effects of electronic medical record phenotyping details on genetic association studies: HDL­C as a case study. BioData Min. 2015;8(1):15. doi:10.1186/S13040­015­0048­2.

21. Newton KM, Peissig PL, Kho AN, et al. Validation of electronic medical record­ based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Informatics Assoc. 2013;20(e1):e147­54. doi:10.1136/amiajnl­2012­000896.

22. Duan R, Cao M, Wu Y, et al. An Empirical Study for Impacts of Measurement Errors on EHR based Association Studies. AMIA. Annu Symp Proc AMIA Symp. 2016;2016:1764­73.

23. Krishnamoorthy P, Gupta D, Chatterjee S, et al. A Review of the Role of Electronic Health Record in Genomic Research. J Cardiovasc Transl Res. 2014;7(8):692­700. doi:10.1007/s12265­014­9586­0.

24. Pacheco JA, Rasmussen LV, Wiley K, et al. Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network. Sci Rep. 2023;13(1):1971. doi:10.1038/S41598­023­27481­y.

25. Khera A V., Chaffin M, Wade KH, et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell. 2019;177(3):587­96.e9. doi:10.1016/j.cell.2019.03.028.

26. Bešević J, Lacey B, Conroy M, et al. New Horizons: the value of UK Biobank to research on endocrine and metabolic disorders. J Clin Endocrinol Metab. 2022;107(9):2403­10. doi:10.1210/clinem/dgac407.

27. Conroy MC, Lacey B, Bešević J, et al. UK Biobank: a globally important resource for cancer research. Br J Cancer. 2023;128(4): 519­27. doi:10.1038/s41416­022­02053­5.

28. Moore HM, Kelly A, Jewell SD, et al. Biospecimen Reporting for Improved Study Quality. Biopreserv Biobank. 2011;9(1):57­70. doi:10.1089/BIO.2010.0036.

29. Sivakova OV, Pokrovskaya MS, Metelskaya VA, et al. International ru les for description of biospecimens are an important factor in impro ving the quality of researches. Profilakticheskaya Meditsina. 2019;22(6):95. (In Russ.) doi:10.17116/profmed20192206295.

30. Sauerbrei W, Taube SE, McShane LM, et al. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. JNCI J Natl Cancer Inst. 2018;110(8):803­11. doi:10.1093/jnci/djy088.

31. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. Eur J Clin Invest. 2015;45(2):204­14. doi:10.1111/eci.12376.

32. Norlin L, Fransson MN, Eriksson M, et al. A Minimum Data Set for Sharing Biobank Samples, Information, and Data: MIABIS. Biopreserv Biobank. 2012;10(4):343­8. doi:10.1089/bio.2012.0003.

33. Metzler I, Ferent LM, Felt U. On samples, data, and their mobility in biobanking: How imagined travels help to relate samples and data. Big Data Soc. 2023;10(1):205395172311586. doi:10.1177/20539517231158635.

34. Spjuth O, Krestyaninova M, Hastings J, et al. Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross­ biobank research. Eur J Hum Genet. 2016;24(4):521­8. doi:10.1038/ejhg.2015.165.

35. Eklund N, Andrianarisoa NH, van Enckevort E, et al. Extending the Minimum Information About BIobank Data Sharing Terminology to Describe Samples, Sample Donors, and Events. Biopreserv Biobank. 2020;18(3):155­64. doi:10.1089/bio.2019.0129.

36. Gedye C, Sachchithananthan M, Leonard R, et al. Driving innovation through collaboration: development of clinical annotation datasets for brain cancer biobanking. Neuro­ Oncology Pract. 2020;7(1):31­7. doi:10.1093/nop/npz036.

37. Jarczak J, Lach J, Borówka P, et al. BioSCOOP — Biobank Sample Communication Protocol. New approach for the transfer of information between biobanks. Database. 2019;2019. doi:10.1093/database/baz105.

38. Proynova R, Alexandre D, Lablans M, et al. A Decentralized IT Architecture for Locating and Negotiating Access to Biobank Samples. Stud Health Technol Inform. 2017;243:75­9.

39. Vuokko R, Vakkuri A, Palojoki S. Systematized Nomenclature of Medicine­ Clinical Terminology (SNOMED CT) Clinical Use Cases in the Context of Electronic Health Record Systems: Systematic Literature Review. JMIR Med Informatics. 2023;11:e43750. doi:10.2196/43750.

40. Park HS, Cho H, Kim HS. Development of an Integrated Biospecimen Database among the Regional Biobanks in Korea. Healthc Inform Res. 2016;22(2):129. doi:10.4258/hir.2016.22.2.129.


Supplementary files

What is already known about the subject?

  • The value of biospecimens stored in a biobank in­creases with the volume of quality standardized biosample-­related data.
  • Extensive and high-quality collected clinical des­cription of biospecimens is one of the key points in research aimed at finding novel methods for the prevention, diagnosis and treatment of various diseases.

What might this study add?

  • There are various methods for creating clinical data on biospecimens.
  • The use of standards in the clinical description of biospecimens opens up opportunities for collabo­ration between biobanks to conduct large-­scale translational and personalized medicine research.

Review

For citations:


Kopylova O.V., Ershova A.I., Borisova A.L., Metelskaya V.A., Drapkina O.M. Specifics of creating clinical abstract of biospecimens. Cardiovascular Therapy and Prevention. 2023;22(11):3855. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3855

Views: 551


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)