Role of cardiac magnetic resonance imaging in assessing the risk of various myocardial remodeling types in left ventricular noncompaction: genetic analysis data
https://doi.org/10.15829/1728-8800-2024-3899
EDN: USMZSQ
Abstract
Aim. To analyze contrast-enhanced cardiac magnetic resonance imaging (MRI) in patients with phenotypic manifestations of left ventricular non-compaction (LVNC) and related genetic mutations, as well as to determine the relationship between mutations and types of left ventricular (LV) remodeling and with a number of other morphological and functional cardiac parameters.
Material and methods. From the registry of patients with LVNC and their relatives, patients with morphological signs of LVNC and 4 related mutations (MYH7, MYBPC3, TTN, and desmin genes (DES, DSG2, DSP and DSC2)). All patients underwent contrast-enhanced cardiac MRI, based on which the type of LV remodeling was determined.
Results. The study included 44 patients who, according to genetic analysis, had mutations in sarcomeric genes responsible for LVNC development. In each patient, the type of LV remodeling was determined based on cardiac MRI results. We found that if patients with LVNC have mutations in the MYBPC3 and TTN genes, the chance of LV dilatation remodeling is significantly higher. On the contrary, in the presence of a DES gene mutation, the probability of this LV remodeling is lower, and milder morphological manifestations of LVNC are noted.
Conclusion. The combination of cardiac MRI data and genetic analysis improves the morphological and functional stratification of patients with LVNC.
About the Authors
E. A. MershinaRussian Federation
Elena A. Mershina - Medical Research and Educational Center of Lomonosov Moscow State University.
Moscow
D. A. Filatova
Russian Federation
Daria A. Filatova - Medical Research and Educational Center of Lomonosov Moscow State University.
Moscow
R. P. Myasnikov
Russian Federation
Roman P. Myasnikov.
Moscow
O. V. Kulikova
Russian Federation
Olga V. Kulikova.
Moscow
A. N. Meshkov
Russian Federation
Aleksey N. Meshkov.
Moscow
A. V. Kiseleva
Russian Federation
Anna V. Kiseleva.
Moscow
V. E. Sinitsyn
Russian Federation
Valentin E. Sinitsyn - Medical Research and Educational Center of Lomonosov Moscow State University.
Moscow
M. S. Kharlap
Russian Federation
Mariya S. Kharlap.
Moscow
References
1. Ilyinsky IM, Ivanov AS, Mozheiko NP, et al. Isolated noncompact myocardium of the left ventricle of the heart: clinical and morphologic study. Bulletin of Transplantology and Artificial Organs. 2020;22(1):16-25. (In Russ.) doi:10.15825/1995-1191-2020-1-16-25.
2. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet Lond. Engl. 2015;386(9995):813-25. doi:10.1016/S0140-6736(14)61282-4.
3. Paluszkiewicz J, Milting H, Kałużna-Oleksy M, et al. Left Ventricular Non-Compaction Cardiomyopathy-Still More Questions than Answers. J Clin Med. 2022;11(14):4135. doi:10.3390/jcm11144135.
4. Mirza H, Mohan G, Khan W, et al. A Review of Left Ventricular Non-compaction Cardiomyopathy (LVNC). J Community Hosp Intern Med Perspect. 2022;12(6):51-63. doi:10.55729/2000-9666.1120.
5. Ritter M, Oechslin E, Sütsch G, et al. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc. 1997;72(1):26-31. doi:10.4065/72.1.26.
6. Aras D, Tufekcioglu O, Ergun K, et al. Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail. 2006;12(9):726-33. doi:10.1016/j.cardfail.2006.08.002.
7. Sandhu R, Finkelhor RS, Gunawardena DR, et al. Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiogr Mt Kisco N. 2008;25(1):8-12. doi:10.1111/j.1540-8175.2007.00560.x.
8. Kovacevic-Preradovic T, Jenni R, Oechslin EN, et al. Isolated left ventricular noncompaction as a cause for heart failure and heart transplantation: a single center experience. Cardiology. 2009;112(2):158-64. doi:10.1159/000147899.
9. Polyak ME, Mershina EA, Zaklyazminskaya EV. Noncompact left ventricular myocardium: symptom, syndrome or developmental variant? Russian Journal of Cardiology. 2017;(2):106-13. (In Russ.) doi:10.15829/1560-4071-2017-2-106-113.
10. Kulikova OV, Myasnikov RP, Mershina EA, et al. Familial form of noncompaction cardiomyopathy: types of myocardial remodeling, variants of clinical course. Results of a multicenter registry. Therapeutic Archive. 2021;93(4):381-8. (In Russ.) doi:10.26442/00403660.2021.04.200677.
11. Grigoratos C, Barison A, Ivanov A, et al. Meta-Analysis of the Prognostic Role of Late Gadolinium Enhancement and Global Systolic Impairment in Left Ventricular Noncompaction. JACC Cardiovasc. Imaging. 2019;12(11):2141-51. doi:10.1016/j.jcmg.2018.12.029.
12. Ross SB, Jones K, Blanch B, Puranik R, et al. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J. 2020;41(14):1428-36. doi:10.1093/eurheartj/ehz317.
13. Kudryavtseva MM, Kiseleva AV, Myasnikov RP, et al. Nucleotide sequence variant of the TPM1 gene in a family with different phenotypes of noncompaction left ventricular myocardium. Cardiovascular Therapy and Prevention. 2023;21(12):3471. (In Russ.) doi:10.15829/1728-8800-2022-3471.
14. Karczewski K, Francioli KC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43. doi:10.1038/s41586-020-2308-7.
15. Petersen S, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101-5. doi:10.1016/j.jacc.2005.03.045.
16. Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):87. doi:10.1186/s12968-020-00683-3.
17. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical Characterization of Left Ventricular Noncompaction in Children. Circulation. 2003;108(21):2672-8. doi:10.1161/01.CIR.0000100664.10777.B8.
18. Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114(4):925-31. doi:10.1542/peds.2004-0718.
19. Towbin JA, Bowles NE. The failing heart. Nature. 2002; 415(6868):227-33. doi:10.1038/415227a.
20. Vaihanskaya TG, Sivitskaya LN, Kurushko TV, et al. Noncompaction cardiomyopathy: part I: clinical and genetic heterogeneity and predictors of unfavourable prognosis. Russian Journal of Cardiology. 2020;25(11):3872. (In Russ.) doi:10.15829/29/1560-4071-2020-3872.
21. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308-39. doi:10.1016/j.hrthm.2011.05.020.
22. Sedaghat-Hamedani F, Haas J, Zhu F, et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38(46):3449-60. doi:10.1093/eurheartj/ehx545.
23. Arad M, Penas-Lado M, Monserrat L, et al. Gene mutations in apical hypertrophic cardiomyopathy. Circulation. 2005; 112(18):2805-11. doi:10.1161/CIRCULATIONAHA.105.547448.
24. Akinrinade O, Ollila L, Vattulainen S, et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart J. 2015;36(34):2327-37. doi:10.1093/eurheartj/ehv253.
25. van Waning JI, Caliskan K, Hoedemaekers YM, et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. J Am Coll Cardiol. 2018;71(7):711-22. doi:10.1016/j.jacc.2017.12.019.
26. Hoedemaekers YM, Caliskan K, Michels M, et al. The Importance of Genetic Counseling, DNA Diagnostics, and Cardiologic Family Screening in Left Ventricular Noncompaction Cardiomyopathy. Circ Cardiovasc Genet. 2010;3(3):232-9. doi:10.1161/CIRCGENETICS.109.903898.
27. van Spaendonck-Zwarts KY, Posafalvi A, van den Berg MP, et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J. 2014;35(32):2165-73. doi:10.1093/eurheartj/ehu050.
28. Linschoten M, Teske AJ, Baas AF, et al. Truncating Titin (TTN) Variants in Chemotherapy-Induced Cardiomyopathy. J Card Fail. 2017;23(6):476-9. doi:10.1016/j.cardfail.2017.03.003.
29. Miszalski-Jamka K, Jefferies JL, Mazur W, et al. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2017;10(4):e001763. doi:10.1161/CIRCGENETICS.117.001763.
30. Saber W, Begin KJ, Warshaw DM, et al. Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay. J Mol Cell Cardiol. 2008;44(6):1053-61. doi:10.1016/j.yjmcc.2008.03.012.
31. Fressart V, Duthoit G, Donal E, et al. Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. EP Europace. 2010;12(6):861-8. doi:10.1093/europace/euq104.
32. Li S, Zhang C, Liu N, et al. Genotype-Positive Status Is Associated With Poor Prognoses in Patients With Left Ventricular Noncompaction Cardiomyopathy. J Am Heart Assoc. 2018;7(20):e009910. doi:10.1161/JAHA.118.009910.
33. Probst S, Oechslin E, Schuler P, et al. Sarcomere Gene Mutations in Isolated Left Ventricular Noncompaction Cardiomyopathy Do Not Predict Clinical Phenotype. Circ Cardiovasc Genet. 2011;4(4):367-74. doi:10.1161/CIRCGENETICS.110.959270.
34. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896-908. doi:10.1001/jama.2013.1363.
35. Nucifora G, Aquaro GD, Pingitore A, et al. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail. 2011;13(2):170-6. doi:10.1093/eurjhf/hfq222.
36. Wan J, Zhao S, Cheng H, et al. Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. J Cardiovasc Magn Reson. 2013; 15(1):20. doi:10.1186/1532-429X-15-20.
37. Ashrith G, Gupta D, Hanmer J, et al. Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy. J Cardiovasc Magn Reson. 2014;16(1):64. doi:10.1186/s12968-014-0064-2.
38. Kulikova OV, Myasnikov RP, Meshkov AN, et al. Nucleotide sequence variant of the RBM20 gene in a family with dilatational phenotype of noncompaction myocardium of the left ventricle. Cardiovascular Therapeutics and Prevention. 2023;21(12):3470. (In Russ.) doi:10.15829/1728-8800-2022-3470.
39. Myasnikov R, Bukaeva A, Kulikova O, et al. A Case of Severe Left-Ventricular Noncompaction Associated with Splicing Altering Variant in The FHOD3 Gene. Genes. 2022;13(2). doi:10.3390/genes13020309.
40. Brodehl A, Meshkov A, Myasnikov R, et al. Hemi- and Homozygous Loss-of-Function Mutations in DSG2 (Desmoglein-2) Cause Recessive Arrhythmogenic Cardiomyopathy with an Early Onset. Int J Mol Sci. 2021;22(7):3786. doi:10.3390/ijms22073786.
41. Kulikova O, Brodehl A, Kiseleva A, et al. The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy. Genes. 2021;12(1):121. doi:10.3390/genes12010121.
Supplementary files
What is already known about the subject?
- Left ventricular non-compaction (LVNC) is a heterogeneous genetic pathology, the dominant ones being mutations of sarcomeric proteins.
- Magnetic resonance imaging is the leading method for diagnosing LVNC, while a number of imaging criteria developed to date do not have sufficient accuracy for an unambiguous diagnosis.
What might this study add?
- The presence of mutations in the MYBPC3 and TTN genes increases the risk of a dilated left ventricular remodeling, which is recognized as a factor of poor prognosis.
- The combination of cardiac magnetic resonance imaging data and genetic analysis improves the morphological and functional stratification of LVNC patients; therefore, genetic testing of patients with LVNC and their relatives is necessary.
Review
For citations:
Mershina E.A., Filatova D.A., Myasnikov R.P., Kulikova O.V., Meshkov A.N., Kiseleva A.V., Sinitsyn V.E., Kharlap M.S. Role of cardiac magnetic resonance imaging in assessing the risk of various myocardial remodeling types in left ventricular noncompaction: genetic analysis data. Cardiovascular Therapy and Prevention. 2024;23(3):3899. (In Russ.) https://doi.org/10.15829/1728-8800-2024-3899. EDN: USMZSQ