Preview

Cardiovascular Therapy and Prevention

Advanced search

Relationship between microplastics and cardiovascular risk factors

https://doi.org/10.15829/1728-8800-2024-4069

EDN: NPTJZH

Abstract

In recent years, plastic has been widely used in various anthropic activity fields, but its waste pollutes the environment. Under the influence of chemical processes, it decomposes micro- and nanoplas­tics, which enter the human body in various ways. New experimental studies indicate that they can cause a number of cardiovascular disorders, including endothelial cell dysfunction and induction of oxi­dative processes.

The article examines the impact of environmental pollution with microplastics on the development of cardiovascular diseases. It is clear that new data on this new risk factor are accumulating and further clinical studies are required.

About the Authors

M. N. Mamedov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



E. A. Savchuk
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Drapkina OM, Kontseva AV, Kalinina AM, et al. Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines 2022. Cardiovascular Therapy and Prevention. 2022;21(4):3235. (In Russ.) doi:10.15829/1728-8800-2022-3235.

2. Aronov DM, Bubnova MG, Drapkina OM. Pathogenesis of at­herosclerosis through the prism of microvascular dysfunction. Cardiovascular Therapy and Prevention. 2021;20(7):3076. (In Russ.) doi:10.15829/1728-8800-2021-3076.

3. Liao SH, Chiu CS, Jang L, et al. Long-Term Exposures to Air Pollutants and Risk of Peripheral Arterial Occlusive Disease: A Nationwide Cohort Study in Taiwan. Front Cardiovasc Med. 2022;9:796423. doi:10.3389/fcvm.2022.796423.

4. Konduracka E, Rostoff P. Links between chronic exposure to out­door air pollution and cardiovascular diseases: A review. Environ Chem Lett. 2022;20:2971-88. doi:10.1007/s10311-022-01450-9.

5. Zhu X, Wang C, Duan X, et al. Micro- and nanoplastics: A new cardiovascular risk factor? Environ Int. 2023;171:107662. doi:10.1016/j.envint.2022.107662.

6. Tabakaev MV, Vlasenko AE, Naumova SA, Artamonova GV. Approaches to assessing the impact of environmental conditions on the cardiovascular pathology of the urban population. Complex problems of cardiovascular diseases. 2015;(4):61-6. (In Russ.) doi:10.17802/2306-1278-2015-4-61-66.

7. Thompson RC, Moore CJ, vom Saal FS, Swan SH. Plastics, the environment and human health: Current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 2009;364:2153-66. doi:10.1098/rstb.2009.0053.

8. Rochman CM, Hoh E, Hentschel BT, Kaye S. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ Sci Technol. 2013;47:1646-54. doi:10.1021/es303700s.

9. Borrelle SB, Ringma J, Law KL, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369:1515-8. doi:10.1126/science.aba3656.

10. Liu K, Wu T, Wang X, et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol. 2019;53:10612-9. doi:10.1021/acs.est.9b03427.

11. Li Y, Shao L, Wang W, et al. Airborne fiber particles: Types, size and concentration observed in Beijing. Sci Total Environ. 2020;705:135967. doi:10.1016/j.scitotenv.2019.135967.

12. MacLeo M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373:61-5. doi:10.1126/science.abg5433.

13. Gigault J, Halle AT, Baudrimont M, et al. Current opinion: What is a nanoplastic? Environ Pollut. 2018;235:1030-4. doi:10.1016/j.envpol.2018.01.024.

14. Cverenkarova K, Valachovicova M, Mackulak T, et al. Micro­plastics in the Food Chain. Life. 2021;11:1349. doi:10.3390/life11121349.

15. Lwanga EH, Vega JM, Quej VK, et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep. 2017;7:14071. doi:10.1038/s41598-017-14588-2.

16. Beriot N, Peek J, Zornoza R, et al. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ. 2021;755:142653. doi:10.1016/j.scitotenv.2020.142653.

17. Karbalaei S, Hanachi P, Walker TR, Cole M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ Sci Pollut Res Int. 2018;25:36046-63. doi:10.1007/s11356-018-3508-7.

18. Veneman WJ, Spaink HP, Brun NR, et al. Pathway analysis of systemic transcriptome responses to injected polystyrene par­ticles in zebrafish larvae. Aquatic Toxicology. 2017;190:112-20. doi:10.1016/j.aquatox.2017.06.014.

19. Nemmar A, Hoylaerts M, Hoet P, et al. Size effect of intra­tracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicology and Applied Pharmacology. 2003;186(1):38-45. doi:10.1016/S0041-008X(02)00024-8.

20. Pitt JA, Kozal JS, Jayasundara N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebra­fish (Danio rerio). Aquatic Toxicology. 2018;194:184-94. doi:10.1016/j.aquatox.2017.11.017.

21. Yang H, Xiong H, Mi K, et al. Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish Carassius auratus Larvae. Journal of Hazardous Materials. 2020;388:122058. doi:10.1016/j.jhazmat.2020.122058.

22. Bhagat J, Zang L, Nakayama H, et al. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci Total Environ. 2021;800:149463. doi:10.1016/j.scitotenv.2021.149463.

23. Sulukan E, Şenol O, Baran A, et al. Nano-sized polystyrene plastic particles affect many cancer-related biological processes even in the next generations; zebrafish modeling. Sci Total Environ. 2022;838(3):156391. doi:10.1016/j.scitotenv.2022.156391.

24. Aggarwal P, Hall JB, McLeland ChB, et al. Nanoparticle inter­action with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews. 2009;61(6):428-37. doi:10.1016/j.addr.2009.03.009.

25. Lu YY, Cao MY, Tian MP, Huang QY. Internalization and cyto­to­xicity of polystyrene microplastics in human umbilical vein endo­thelial cells. J Appl Toxicol. 2023;43:262-71. doi:10.1002/jat.4378.

26. Fu Y, Fan M, Xu L, et al. Amino-Functionalized Polystyrene Nano-Plastics Induce Mitochondria Damage in Human Umbilical Vein Endothelial Cells. Toxics. 2022;10:215. doi:10.3390/toxics10050215.

27. Lu YY, Li H, Ren H, et al. Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells. J Hazard Mater. 2022;421:126770. doi:10.1016/j.jhazmat.2021.126770.

28. Zhou Y, Wu Q, Li Y, et al. Low-dose of polystyrene microplastics induce cardiotoxicity in mice and human-originated cardiac organoids. Environ Int. 2023;179:108171. doi:10.1016/j.envint.2023.108171.

29. Chen YC, Chen KF, Andrew Lin KY, et al. Evaluation of toxicity of polystyrene microplastics under realistic exposure levels in human vascular endothelial EA.hy926 cells. Chemosphere. 2023;313:137582. doi:10.1016/j.chemosphere.2022.137582.

30. Ballesteros S, Domenech J, Barguilla I, et al. Genotoxic and im­munomodulatory effects in human white blood cells after ex vi­vo exposure to polystyrene nanoplastics. Environ Sci Nano. 2020;7: 3431-46. doi:10.1039/D0EN00748J.

31. Barshtein G, Livshits L, Shvartsman LD, et al. Polystyrene nano­par­ticles activate erythrocyte aggregation and adhesion to endo­thelial cells. Cell Biochem Biophys. 2016;74:19-27. doi:10.1007/s12013-015-0705-6.

32. Florance I, Chandrasekaran N, Gopinath PM, Mukhe­rjee A. Exposure to polystyrene nanoplastics impairs lipid me­ta­bolism in human and murine macrophages in vitro. Eco-toxicol. Environ Saf. 2022;238:113612. doi:10.1016/j.ecoenv.2022.113612.

33. Marfella R, Prattichizzo F, Sardu C, et al. Microplastics and Na­noplastics in Atheromas and Cardiovascular Events. N Engl J Med. 2024;390:900-10. doi:10.1056/NEJMoa2309822.


  • Environment pollution with microplastics affects the development of cardiovascular diseases.
  • Cardiovascular disorders include endothelial cell dysfunction and induction of oxidative processes.
  • Individuals with carotid atherosclerosis whose athe­roma contained microplastics and nanoplastics had a 4,5 times higher risk of fatal and nonfatal vascular complications compared with individuals with non-plastic atheroma.
  • Plastic pollutants need to be considered as a new cardiovascular risk factor.

Review

For citations:


Mamedov M.N., Savchuk E.A. Relationship between microplastics and cardiovascular risk factors. Cardiovascular Therapy and Prevention. 2024;23(6):4069. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4069. EDN: NPTJZH

Views: 693


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)