Preview

Cardiovascular Therapy and Prevention

Advanced search

MicroRNA as biomarkers of coronary artery disease in real-world practice

https://doi.org/10.15829/1728-8800-2024-4225

EDN: VFFOUA

Abstract

The literature review is devoted to circulating microRNA (small noncoding ribonucleic acid molecules) of blood plasma and serum, and potential of their use as new biomarkers of coronary artery disease (CAD) at various stages. The study results demonstrate different levels of plasma and serum microRNA expression in patients with and without CAD. In this regard, determination of microRNA expression level for minimally invasive diagnosis of CAD seems promising, as well as further prognosis of disease progression. A list of microRNAs as potential biomarkers of CAD has been compiled.

About the Authors

V. I. Mikhailina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. N. Kiseleva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. I. Ershova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. 2022 Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022;21(4):3235. (In Russ.) doi:10.15829/1728-88002022-3235.

2. Vaisman DSh, Enina EN. Сoronary artery disease mortality rates in the Russian Federation and a number of regions: dynamics and structure specifics. Cardiovascular Therapy and Prevention. 2024;23(7):3975. (In Russ.) doi:10.15829/1728-8800-2024-3975.

3. Vasiliev SV, Akselrod AS, Zhelankin AV, et al. Circulating miR-215p, miR-146a-5p, miR-320a-3p in patients with atrial fibrillation in combination with hypertension and coronary artery disease. Cardiovascular Therapy and Prevention. 2022;21(1):2814. (In Russ.) doi:10.15829/1728-8800-2022-2814.

4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97.

5. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6): e1003569. doi:10.1371/journal.pgen.1003569.

6. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):3-11. doi:10.1055/s-0034-1397344.

7. O'Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402.

8. Korobov GA, Sazonova MA, Sobenin IA, et al. Ischemic Heart Disease: the regulation by micro RNA. 2011;6(2):5-9. (In Russ.)

9. Gadde S, Rayner KJ. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(9):e73-9. doi:10.1161/ATVBAHA.116.307481.

10. Michell DL, Vickers KC. HDL and microRNA therapeutics in cardiovascular disease. Pharmacol Ther. 2016;168:43-52. doi:10.1016/j.pharmthera.2016.09.001.

11. Rawlings-Goss RA, Campbell MC, Tishkoff SA. Global populationspecific variation in miRNA associated with cancer risk and clinical biomarkers. BMC Med Genomics. 2014;7:53. doi:10.1186/17558794-7-53.

12. Meder B, Backes C, Haas J, et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60(9):1200-8. doi:10.1373/clinchem.2014.224238.

13. Wang K, Yuan Y, Cho JH, et al. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561. doi:10.1371/journal.pone.0041561.

14. Matias-Garcia PR, Wilson R, Mussack V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15(1):e0227648. doi:10.1371/journal.pone.0227648.

15. Chan SF, Cheng H, Goh KK, et al. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn. 2023;25(7):438-53. doi:10.1016/j.jmoldx.2023.03.005.

16. Zhu GF, Chu T, Ruan Z, et al. Inflammation-Related MicroRNAs Are Associated with Plaque Stability Calculated by IVUS in Coronary Heart Disease Patients. J Interv Cardiol. 2019;2019: 9723129. doi:10.1155/2019/9723129.

17. Draganova AS, Polyakova EA, Kolodina DA, et al. Expression of miRNA-27a in the serum of patients with non-ST elevation acute coronary syndrome who underwent percutaneous coronary intervention. Russian Journal of Cardiology. 2019;(2):70-5. (In Russ.) doi:10.15829/15604071-2019-2-70-75.

18. Kumar D, Narang R, Sreenivas V, et al. Circulatory miR-133b and miR-21 as Novel Biomarkers in Early Prediction and Diagnosis of Coronary Artery Disease. Genes (Basel). 2020;11(2):164. doi:10.3390/genes11020164.

19. Pan X, He Y, Chen Z, et al. Circulating miR-130 is a potential bio signature for early prognosis of acute myocardial infarction. J Thorac Dis. 2020;12(12):7320-5. doi:10.21037/jtd-20-3207.

20. Zhong Z, Zhong W, Zhang Q, et al. Circulating microRNA expression profiling and bioinformatics analysis of patients with coronary artery disease by RNA sequencing. J Clin Lab Anal. 2020;34(1):e23020. doi:10.1002/jcla.23020.

21. Zhelankin AV, Stonogina DA, Vasiliev SV, et al. Circulating Extracellular miRNA Analysis in Patients with Stable CAD and Acute Coronary Syndromes. Biomolecules. 2021;11(7):962. doi:10.3390/biom11070962.

22. Ding H, Chen W, Chen X. Serum miR-96-5p is a novel and noninvasive marker of acute myocardial infarction associated with coronary artery disease. Bioengineered. 2022;13(2):3930-43. doi:10.1080/21655979.2022.2031392.

23. Yu X, Xu JF, Song M, et al. Associations of Circulating microRNA-221 and 222 With the Severity of Coronary Artery Lesions in Acute Coronary Syndrome Patients. Angiology. 2022;73(6):579-87. doi:10.1177/00033197211034286.

24. Volodko O, Volinsky N, Yarkoni M, et al. Characterization of Systemic and Culprit-Coronary Artery miR-483-5p Expression in Chronic CAD and Acute Myocardial Infarction Male Patients. Int J Mol Sci. 2023;24(10):8551. doi:10.3390/ijms24108551.

25. Ozuynuk-Ertugrul AS, Ekici B, Erkan AF, et al. Alteration of circulating miRNAs during myocardial infarction and association with lipid levels. Lab Med. 2024;55(3):361-72. doi:10.1093/labmed/lmad094.

26. Gorur A, Celik A, Yildirim DD, et al. Investigation of possible effects of microRNAs involved in regulation of lipid metabolism in the pathogenesis of atherosclerosis. Mol Biol Rep. 2019;46(1): 909-20. doi:10.1007/s11033-018-4547-3.

27. Li H, Gao F, Wang X, et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 2019;39(5):BSR20182016. doi:10.1042/BSR20182016.

28. Zehtabian SH, Alibakhshi R, Seyedena SY, et al. Relationship between microRNA-206 plasma levels with the severity of coronary artery conflicts in patients with coronary artery disease. Bratisl Lek Listy. 2019;120(8):581-5. doi:10.4149/BLL_2019_095.

29. Zhu L, Chen T, Ye W, et al. Circulating miR-182-5p and miR5187-5p as biomarkers for the diagnosis of unprotected left main coronary artery disease. J Thorac Dis. 2019;11(5):1799-808. doi:10.21037/jtd.2019.05.24.

30. Polyakova EA, Zaraisky MI, Belyaeva OD, et al. Serum miRNA-203 Expression in Patients with Coronary Artery Disease and Abdominal Obesity. Doctor.Ru. 2019;10(165):6-10. (In Russ.) doi:10.31550/1727-2378-2019-165-10-6-10.

31. Zhang X, Cai H, Zhu M, et al. Circulating microRNAs as biomarkers for severe coronary artery disease. Medicine (Baltimore). 2020; 99(17):e19971. doi:10.1097/MD.0000000000019971.

32. Mishra S, Rizvi A, Pradhan A, et al. Circulating microRNA-126 &122 in patients with coronary artery disease: Correlation with small dense LDL. Prostaglandins Other Lipid Mediat. 2021;153:106536. doi:10.1016/j.prostaglandins.2021.106536.

33. Polyakova EA, Zaraiskii MI, Mikhaylov EN, et al. Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. Int J Cardiol. 2021;322:9-15. doi:10.1016/j.ijcard.2020.08.04.

34. Hosseinpor S, Khalvati B, Safari F, et al. The association of plasma levels of miR-146a, miR-27a, miR-34a, and miR-149 with coronary artery disease. Mol Biol Rep. 2022;49(5):3559-67. doi:10.1007/s11033-022-07196-5.

35. Ekedi AVNB, Rozhkov AN, Shchekochikhin DY, et al. Evaluation of microRNA Expression Features in Patients with Various Types of Arterial Damage: Thoracic Aortic Aneurysm and Coronary Atherosclerosis. J Pers Med. 2023;13(7):1161. doi:10.3390/jpm13071161.

36. Choudhury RR, Gupta H, Bhushan S, et al. Role of miR-128-3p and miR-195-5p as biomarkers of coronary artery disease in Indians: a pilot study. Sci Rep. 2024;14(1):11881. doi:10.1038/s41598-024-61077-4.

37. Iusupova AO, Slepova OA, Pakhtusov NN, et al. Assessment of the Level of Matrix Metalloproteinases, VEGF and MicroRNA34a in Patients With Non-obstructive and Obstructive Lesions of the Coronary Arteries. Kardiologiia. 2024;64(4):14-21. (In Russ.) doi:10.18087/cardio.2024.4.n2622.

38. Kiseleva AV, Vasilyev DK, Soplenkova AG, et al. Association of plasma microRNA levels with different collateral circulation degree in chronic total occlusion patients with coronary artery disease: a pilot study. Cardiovascular Therapy and Prevention. 2024;23(7):4086. (In Russ.) doi:10.15829/1728-8800-2024-4086.

39. de Gonzalo-Calvo D, Vilades D, Martínez-Camblor P, et al. Circulating microRNAs in suspected stable coronary artery disease: A coronary computed tomography angiography study. J Intern Med. 2019;286(3):341-55. doi:10.1111/joim.12921.

40. Wang X, Dong Y, Fang T, et al. Circulating MicroRNA-423-3p Improves the Prediction of Coronary Artery Disease in a General Population — Six-Year Follow-up Results From the ChinaCardiovascular Disease Study. Circ J. 2020;84(7):1155-62. doi:10.1253/circj.CJ-19-1181.

41. Wu J, Wu S, Liu D, et al. Clinical Significance of MicroRNA-2993p in Coronary Artery Disease Based on Bioinformatics Analysis. Cell Biochem Biophys. 2024;82(4):3453-62. doi:10.1007/s12013024-01431-5.

42. Karlin H, Sooda M, Larson M, et al. Plasma Extracellular MicroRNAs Associated With Cardiovascular Disease Risk Factors in Middle-Aged and Older Adults. J Am Heart Assoc. 2024;13(12):e033674. doi:10.1161/JAHA.123.033674.

43. Fazmin IT, Achercouk Z, Edling CE, et al. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules. 2020;10(10):1354. doi:10.3390/biom10101354.

44. Hutcheson R, Chaplin J, Hutcheson B, et al. miR-21 normalizes vascular smooth muscle proliferation and improves coronary collateral growth in metabolic syndrome. FASEB J. 2014;28(9):4088-99. doi:10.1096/fj.14-251223.

45. Xue Y, Wei Z, Ding H, et al. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis. 2015;241:671-81.

46. Alvarez ML, Khosroheidari M, Eddy E, et al. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis. 2015;242(2):595-604. doi:10.1016/j.atherosclerosis.2015.08.023.

47. Chen W, Yin K, Zhao GJ, et al. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2): 314-23. doi:10.1016/j.atherosclerosis.2012.01.020.


Supplementary files

What is already known about the subject?

  • Early diagnosis of the disease is a reliable tool for car­diovascular prevention.
  • Circulating microRNAs (small non-coding ribo­nucleic acid molecules) are potential new class of bio­markers for coronary artery disease (CAD).

What might this study add?

  • A list of 45 microRNAs associated with CAD has been compiled.
  • Only 8 miRNAs (hsa-miR-21, hsa-miR-126, hsa-miR-27a, hsa-miR-146a, hsa-miR-222, hsa-miR-17, hsa-miR-133a and hsa-miR-203) have been described in more than one study as biomar­kers of CAD.

Review

For citations:


Mikhailina V.I., Meshkov A.N., Kiseleva A.N., Ershova A.I., Drapkina O.M. MicroRNA as biomarkers of coronary artery disease in real-world practice. Cardiovascular Therapy and Prevention. 2024;23(12):4225. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4225. EDN: VFFOUA

Views: 239


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)