Ambulatory pulse wave monitoring: current and future. Opinion paper of Russian Experts
https://doi.org/10.15829/1728-8800-2018-6-95-109
Abstract
The predictive value of vascular biomarkers such as pulse wave velocity (PWV), central arterial pressure (CAP), and augmentation index (AIx), obtained through pulse wave analysis (PWA) in resting conditions, has been documented in a variety of patient groups and populations. There are appropriate recommendations on their clinical use in clinical practice guidelines of various scientific societies. Operator-independent methods are currently available for estimating vascular biomarkers also in ambulatory conditions. The acceptable accuracy and reproducibility of ambulatory PWA makes it be a promising tool for evaluating vascular biomarkers in daily-life conditions. This approach may provide an opportunity to further improve the early cardiovascular screening in subjects at risk. However, there is no sufficient evidence to support the routine clinical use of PWA in ambulatory conditions at the moment. In particular, long-term outcome studies are needed to show the predictive value of ambulatory PWV, CAP and AIx values.
About the Authors
Yu. V. KotovskayaRussian Federation
Moscow
A. N. Rogoza
Russian Federation
Moscow
Ya. A. Orlova
Russian Federation
I. N. Posokhov
Russian Federation
Nizhny Novgorod
References
1. Palatini P, Casiglia E, G^sowski J, et al. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag. 2011;7:725-39. doi:10.2147/VHRM.S25270.
2. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588-605. doi:10.1093/eurheartj/ehl254.
3. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159-219. doi:10.1093/euroheartj/eht151.
4. Vlachopoulos C, Xaplanteris P, Aboyans V, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507-32. doi:10.1016/j.atherosclerosis.2015.05.007.
5. McEniery CM, Cockcroft JR, Roman MJ, et al. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719-25. doi:10.1093/eurheartj/eht565.
6. Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445-8. doi:10.1097/HJH.0b013e32834fa8b0.
7. Stergiou GS, Parati G, Vlachopoulos C, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions—position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34:1665-77. doi:10.1097/HJH.0000000000000969.
8. Nichols W, O'Rourke M, Vlachopoulos C. McDonald's blood flow in arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles. Boca Raton: CRC Press, 2011. 768 c. ISBN 9780340985014 — CAT# K18800.
9. Tyberg JV, Davies JE, Wang Z, et al. Wave intensity analysis and the development of the reservoir-wave approach. Med Biol Eng Comput. 2009;47:221-32. doi:101007/s11517-008-0430-z.
10. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. JACC. 2010;55:1318-27. doi:10.1016/j.jacc.2009.
11. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. JACC. 2014;63:636-46. doi:10.1016/j.jacc.2013.09.063.
12. Vlachopoulos C, Aznaouridis K, O'Rourke MF, et al. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865-71. doi:10.1093/eurheartj/ehq024.
13. Guerin AP, Blacher J, Pannier B, et al. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103:987-92.
14. Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213-25. doi:10.1161/CIRCULATIONAHA.105.595496.
15. Townsend RR, Wilkinson IB, Schiffrin EL, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698-722. doi:101161/HYP.0000000000000033.
16. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122-33. doi:10.1093/eurheartj/ehu293.
17. Chiang CE, Wang TD, Ueng KC, et al. 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the management of hypertension. J Chin Med Assoc. 2015;78:1-47. doi:10.1016/j.jcma.2014.11.005.
18. Wassertheurer S, Kropf J, Weber T, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J HumHypertens. 2010;24:498-504. doi:10.1038/jhh.2010.27.
19. Hametner B, Wassertheurer S, Kropf J, et al. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173-6. doi:10.1097/MBP.0b013e3283614168.
20. Rogoza AN, Kuznetsov AA. Central aortic blood pressure and augmentation index: comparison between Vasotens and SphygmoCor technology. Res Rep Clin Cardiol. 2012;3:27-33. doi:10.2147/RRCC.S30994.
21. Williams B, Lacy PS, Yan P, et al. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. JACC. 2011;57:951-61. doi: 10.1016/j.jacc.2010.09.054.
22. Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens. 2009;27:2186-91. doi:10.1097/HJH.0b013e32833057e8.
23. Horvath IG, Nemeth A, Lenkey Z, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068-75. doi:10.1097/HJH.0b013e32833c8a1a.
24. Cremer A, Codjo L, Butlin M, et al. Determination of central blood pressure by a noninvasive method (brachial blood pressure and QKD interval): a noninvasive validation. J Hypertens. 2013;31:1847-52. doi:10.1097/HJH.0b013e328362bab9.
25. Cremer A, Butlin M, Codjo L, et al. Determination of central blood pressure by a noninvasive method (brachial BP and QKD interval). J Hypertens. 2012;30:1533-9. doi:10.1097/HJH.0b013e328354dd26.
26. Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2591-4. doi:10.1109/EMBC.2012.6346494.
27. Hwang MH, Yoo JK, Kim HK, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014;28:475-81. doi:10.1038/jhh.2013.144.
28. Bilo G, Zorzi C, Ochoa Munera JE, et al. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit. 2015;20:291-4. doi:10.1097/MBP.0000000000000124.
29. Protogerou AD, Argyris A, Nasothimiou E, et al. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Am J Hypertens. 2012;25:876-82. doi: 10.1038/ajh.2012.63.
30. Papaioannou TG, Argyris A, Protogerou AD, et al. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: the first feasibility and reproducibility study. Int J Cardiol. 2013;169:57-61. doi:10.1016/j.ijcard.2013.08.079.
31. Posokhov IN, Konradi AO, Shlyakhto EV, et al. Day- to-day repeatability of the Pulse Time Index of Norm. Med Devices (Auckl). 2014;7:29-33. doi:10.2147/MDER.S58507.
32. Jankowski P, Bednarek A, Olszanecka A, et al. Twenty-four-hour profile of central blood pressure and central-to-peripheral systolic pressure amplification. Am J Hypertens 2013;26:27-33. doi:10.1093/ajh/hps030.
33. Boggia J, Luzardo L, Lujambio I, et al. The diurnal profile of central hemodynamics in a general Uruguayan population. Am J Hypertens. 2016;29:737-46. doi:10.1093/ajh/hpv169
34. Protogerou AD, Argyris AA, Papaioannou TG, et al. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805-14. doi:10.1097/HJH.0000000000000263.
35. Zhang Y, Kollias G, Argyris AA, et al. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29:442-8. doi:10.1038/jhh.2014.101.
36. Aissopou EK, Argyris AA, Nasothimiou EG, et al. Ambulatory aortic stiffness is associated with narrow retinal arteriolar caliber in hypertensives: the SAFAR study. Am J Hypertens. 2016;29:626-33. doi:10.1093/ajh/hpv145.
37. Elsurer R, Afsar B. Serum uric acid and arterial stiffness in hypertensive chronic kidney disease patients: sex-specific variations. Blood Press Monit. 2014;19:271-9. doi:10.1097/MBP.0000000000000056.
38. Maloberti A, Cesana F, Hametner B, et al. Increased nocturnal heart rate and wave reflection are early markers of cardiovascular disease in Williams-Beuren syndrome children. J Hypertens. 2015;33:804-9. doi:10.1097/HJH.0000000000000454.
39. Yilmaz S, Celik G, Esmen SE. Assessment of arterial stiffness in patients with inactive and active Behcet's disease. Scand J Rheumatol. 2014;43:63-9. doi:10.3109/03009742.2013.809787.
40. Karpetas A, Sarafidis PA, Georgianos PI, et al. Ambulatory recording of wave reflections and arterial stiffness during intra- and interdialytic periods in patients treated with dialysis. Clin J Am Soc Nephrol. 2015;10:630-8. doi:10.2215/CJN.08180814.
41. Koutroumbas G, Georgianos PI, Sarafidis PA, et al. Ambulatory aortic blood pressure wave reflections and pulse wave velocity are elevated during the third in comparison to the second interdialytic day of the long interval in chronic haemodialysis patients. Nephrol Dial Transplant. 2015;30:2046-53. doi:10.1093/ndt/gfv090.
42. Kuznetsova TY, Korneva VA, Bryantseva EN, et al. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers. Vasc Health Risk Manag. 2014;10:247-51. doi:10.2147/VHRM.S61978
43. Omboni S, Posokhov IN, Rogoza AN. Evaluation of 24-hour arterial stiffness indices and central hemodynamics in healthy normotensive subjects versus treated or untreated hypertensive patients: a feasibility study. Int J Hypertens. 2015;2015:601812. doi:10.1155/2015/601812.
44. Omboni S, Posokhov IN, Rogoza AN. Evaluation of 24-hour arterial stiffness indices and central hemodynamics in healthy normotensive subjects versus treated or untreated hypertensive patients: a feasibility study. Int J Hypertens. 2015;2015:601812. doi:10.1155/2015/601812.
45. Posokhov IN, Kulikova NN, Starchenkova IV, et al. The BPulse Time Index of Norm highly correlates with the leftventricularmass index in patients with arterial hypertension. Vasc Health Risk Manag. 2014;10:139-44. doi:10.2147/VHRM.S58351.
46. Minyukhina IE, Lipatov KS, Posokhov IN. Analysis of 24-hour pulse wave velocity in patients with renal transplantation. Int J Nephrol Renov Dis. 2013;6:125-9. doi:10.2147/IJNRD.S47011.
47. Aksenova TA, Gorbunov VV, Parkhomenko IV. 24-hour monitoring central aortic pressure in patients with hypertensive disease and concomitant chronic obstructive pulmonary disease. Klin Med (Mosk). 2013;91:43-7. (In Russ.)
48. Kotovskaya Y, Semagina I, Kobalava Z. Comparative analysis of the daily profile of blood pressure in the brachial artery and aorta with simultaneous monitoring in patients with untreated arterial hypertension. Arterial'naya Gipertenziya (Arterial 58. Hypertension). 2015;21,6:567-76. (In Russ.) doi:10.18705/1607-419X-2015-21-6-567-576.
49. Kobalava Z, Kotovskaya Y, Semagina I, Bogomaz AV. Daily blood pressure profiles in the brachial artery and aorta: the ratio and effects of a fixed combination of amlodipine and lisinopril. Kardiologiia. 2014;54(10):13-8. (In Russ.)
50. Kobalava Z, Kotovskaya Y, Semagina I. Markers of cardiovascular aging: effects of multicomponent therapy. Klinicheskaja farmakologija I therapija. 2016;25(3):46-52. (In Russ.)
51. Theilade S, Lajer M, Hansen TW, et al. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes — a cross-sectional study. Cardiovasc Diabetol. 2013; 12:122. doi:10.1186/1475-2840-12-122.
52. Williams B, Lacy PS, Baschiera F, et al. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension. 2013;61:1168-76. doi:10.1161/HYPERTENSIONAHA111.00763.
53. Teong HH, Chin AM, Sule AA, Tay JC. Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study. Singap Med J. 2016;57:384-9. doi:10.11622/smedj.2016040.
54. Celik G, Yilmaz S, Kebapcilar L, Gundogdu A. Central arterial characteristics of gout patients with chronic kidney diseases. Int J Rheum Dis. 2015;20(5):628-38. doi:10.1111/1756-185X.12689.
55. Gosse P, Cremer A, Papaioannou G, Yeim S. Arterial stiffness from monitoring of timing of Korotkoff sounds predicts the occurrence of cardiovascular events independently of left ventricular mass inhypertensive patients. Hypertension. 2013;62:161-7. doi:10.1161/HYPERTENSIONAHA.113.01039.
56. Omboni S, Posokhov IN, Parati G, et al. Vascular Health Assessment of The Hypertensive Patients (VASOTENS) Registry: study protocol of an international, web-based telemonitoring registry for ambulatory blood pressure and arterial stiffness. JMIR Res Prot. 2016;5:e137. doi:10.2196/resprot.5619.
57. Omboni S, Posokhov I, Kotovskaya Y, et al. Twenty-Four-Hour Ambulatory Pulse Wave Analysis in Hypertension Management: Current Evidence and Perspectives. Curr Hypertens Rep. 2016;18:72. doi:10.1007/s11906-016-0681-2
58. Narayan O, Casan J, Szarski M, et al. Estimation of central aortic blood pressure: a systematic metaanalysis of available techniques. J Hypertens. 2014;32:1727-40. doi:10.1097/HJH.0000000000000249.
59. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237-48. doi:10.1097/HJH.0000000000000921.
60. Cheng HM, Lang D, Tufanaru C, Pearson A. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol. 2013;167:1867-76. doi:10.1016/j.ijcard.2012.04.155.
61. Wilkinson IB, McEniery CM, Schillaci G, et al. Artery Society guidelines for validation of oninvasive haemodynamic measurement devices: part 1, arterial pulse wave velocity. Artery Res. 2010;4:34-40. doi:10.1016/j.artres.2010.03.001.
62. Parati G, Stergiou G, O'Brien E, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359-66. doi:10.1097/HJH.0000000000000221.
63. Reference Values for Arterial Stiffness' Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J. 2010;31:2338-50. doi:10.1093/eurheartj/ehq165.
64. Engelen L, Bossuyt J, Ferreira I, et al. Reference values for local arterial stiffness. Part A: carotid artery. J Hypertens. 2015;33:1981-96. doi: 10.1097/HJH.0000000000000654.
65. Bossuyt J, Engelen L, Ferreira I, et al. Reference values for local arterial stiffness. Part B: femoral artery. J Hypertens. 2015;33:1997-2009. doi: 10.1097/HJH.0000000000000655.
Review
For citations:
Kotovskaya Yu.V., Rogoza A.N., Orlova Ya.A., Posokhov I.N. Ambulatory pulse wave monitoring: current and future. Opinion paper of Russian Experts. Cardiovascular Therapy and Prevention. 2018;17(6):95-109. (In Russ.) https://doi.org/10.15829/1728-8800-2018-6-95-109