THE WAYS OF LONG-TERM BLOOD PRESSURE CONTROL SYSTEMS DEVELOPMENT
https://doi.org/10.15829/1728-8800-2015-1-78-82
Abstract
The significance of arterial hypertension (AH) is discussed as the main predictor of cardiovascular catastrophes development — myocardial infarction and stroke, and technologies for the solution of blood pressure (BP) control. The most modern world developments are presented for the distant observation of cardiovascular system (CVS) condition, including BP level in high risk patients. The main specifications of abroad invasive BP systems are provided, and Russian developing system with a layout of BP sensor and the method of no wired signal transmission and electrical supply. It is presupposed that such invasive device can in real time mode send the data on BP and its values, that characterize CVS condition. In critical BP changes the signals of alarm are incorporated to send to the emergency care stations and to the physician for proper solutions on the care, including urgencies. Such system might increase the effectiveness of prophylactic and medical care for the patients with cardiovascular pathology, increase the duration of life, and decrease funding, and not need supplementary inclusion of higher qualified specialists for dispensary screening.
About the Authors
S. A. RumyantsevaRussian Federation
V. A. Stupin
Russian Federation
R. G. Oganov
Russian Federation
E. V. Silina
Russian Federation
E. A. Kolesnikova
Russian Federation
V. A. Petrov
Russian Federation
V. A. Kasymov
Russian Federation
N. N. Shusharina
Russian Federation
D. V. Ladaniy
Russian Federation
E. A. Bogdanov
Russian Federation
References
1. Young J. The global epidemiology of heart failure. Medical Clinics of North America 2004;88: 1135-43.
2. Roger VL, Grenfell R, Lee R, et al. The hidden epidemic of hypertension. Heart Lung Circ. 2014; 23(4): 381-3.
3. Oganov RG, Timofeeva TN, Koltunov IE, et al. Arterial hypertension epidemiology in Russia; the results of 2003-2010 federal monitoring. Cardiovascular Therapy and Prevention 2011; 10(1): 3-7. Russian (Оганов Р. Г., Тимофеева Т. Н., Колтунов И. Е. и др. Эпидемиология артериальной гипертонии в России. Результаты федерального мониторинга 2003-2010 гг. Кардиоваскулярная терапия и профилактика 2011; 10(1): 3-7).
4. Oganov RG. Unfulfilled expectations and paradoxes of Preventive Cardiology. Cardiovascular Therapy and Prevention 2009; 8(7): 4-9. Russian (Оганов Р. Г. Несбывшиеся надежды и парадоксы профилактической кардиологии. Кардиоваскулярная терапия и профилактика. 2009; 8(7): 4-9).
5. Oganov RG, Belenkov YN. Cardiology. National leadership. M.: GEOTAR-Media, 2010; 1232 р. Russian (Оганов Р. Г., Беленков Ю. Н. Кардиология. Национальное руководство. М.: ГЭОТАР-Медиа, 2010; 1232 с).
6. Oganov RG, Kalinina AM, Shalnova SA. Prevention of cardiovascular diseases. Guidance of a specialist library. M.: GEOTAR-Media, 2009; 216 р. Russian (Оганов Р. Г., Калинина А. М., Шальнова С. А. Профилактика сердечно-сосудистых заболеваний. Руководство, Библиотека врача-специалиста. М.: ГЭОТАР- Медиа, 2009; 216 с).
7. St. Jude Medical acquires CardioMEMS and announces FDA approval of heart failure (HF) monitoring technology. Date Views 10.06.2014 www.cardiomems.com/content. asp?display=news&view=20.
8. The CardioMEMS Champion™ HF Monitoring System for Patients with NYHA Class III Heart Failure Executive Summary for the Circulatory Systems Device Panel
9. Advisory Committee. (8 December 2011). Date Views 25.06.2014 www.fda.gov/ downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/ MedicalDevicesAdvisoryCommittee/CirculatorySystemDevicesPanel/ UCM281514.pdf.
10. Abraham WT, Adamson PB, Bourge RC, et al.; CHAMPION Trial Study Group. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011; 377(9766): 658-66.
11. No batteries required. Microscale medical sensors inserted under the skin can be powered wirelessly by an external handheld receiver. (Published online 27 March 2013). Date Views 25.08.2014. www.research.a-star.edu.sg/ research/6651.
12. Wireless device powers implanted blood-pressure sensor, eliminating batteries. (Published online 29 March 2013). Date Views 25.08.2014. www.kurzweilai. net/wireless-device-powers-implanted-blood-pressure-sensor-eliminating- batteries
13. Cheong JH, Ng SS, Liu X, et al. An inductively powered implantable blood flow sensor microsystem for vascular grafts. IEEE Transactions on Biomedical Engineering. 2012; 59(9):2466-75.
14. Pivonka D, Yakovlev A, Poon F, Meng T. A mm-Sized Wirelessly Powered and Remotely Controlled Locomotive Implant. (Published online May 2013). Date Views 17.08.2014 www.stanford.edu/~adapoon/papers/tbcas12.pdf.
15. Cleven NJ, MQntjes JA, Fassbender H, et al. A novel fully implantable wireless sensor system for monitoring hypertension patients. IEEE Transactions on Biomedical Engineering. 2012; 59(11): 3124-30.
16. Fiala J, Bingger P, Ruh D, et al. An implantable optical blood pressure sensor based on pulse transit time. Biomedical Microdevices. 2013; 15(1): 73-81.
Review
For citations:
Rumyantseva S.A., Stupin V.A., Oganov R.G., Silina E.V., Kolesnikova E.A., Petrov V.A., Kasymov V.A., Shusharina N.N., Ladaniy D.V., Bogdanov E.A. THE WAYS OF LONG-TERM BLOOD PRESSURE CONTROL SYSTEMS DEVELOPMENT. Cardiovascular Therapy and Prevention. 2015;14(1):78-82. (In Russ.) https://doi.org/10.15829/1728-8800-2015-1-78-82