Pharmacological correction of plasma redox potential and endothelial dysfunction in ischemic heart failure
https://doi.org/10.15829/1728-8800-2012-1-54-58
Abstract
Aim. To study the role of plasma redox potential reduction in the development of endothelial dysfunction (ED) among patients with chronic heart failure (CHF) and to investigate the potential of its pharmacological correction.
Material and methods. This randomised cohort study included 73 patients with CHF, due to coronary heart disease (CHD) and arterial hypertension. Mean age of the participants was 59,2±5,9 years. Functional Class (FC) I CHF was registered in 9 patients, FC II CHF in 21, FC III CHF in 23, and FC IV CHF in 11. After the baseline examination, all participants were randomised into two groups. The main group (MG) received standard therapy plus adenocin (2 ampoules in 70 ml 5% glucose, intravenously) for 10 days.
Results. For the first time, the dynamics of redox potential and total pyridine nucleotide levels was assessed in relation to the FC of ischemic CHF. Redox potential reduction preceded the changes in the total pyridine nucleotide levels. In contrast to standard therapy, adenocin increased plasma redox potential and endothelial growth factor levels, while reducing endothelin-1 concentrations and NADPH oxidase activity.
Conclusion. Combination therapy with adenocin – a unique medication of reduced NAD form, cardiac glycoside, and inosine, in contrast to standard treatment, significantly increased cellular redox potential in CHF, which could play an important role in angiogenesis stimulation and reverse endothelial remodelling.
About the Authors
O. P. DonetskayaRussian Federation
V. A. Tulupova
Russian Federation
N. V. Shuldeshova
Russian Federation
M. M. Fedorova
Russian Federation
References
1. Бокерия Л.А., Маликов В.Е., Арзуманян Е.А. и др. Рациональная фармакоррекция синдрома системного воспалительного ответа у больных со сниженной сократительной функцией сердца. Бюлл сердсосуд хир. Гематология 2008; 2: 45-53.
2. Маликов В.Е., Арзуманян М.А., Донецкая О.П. Фармакологическая коррекция индукции про- и противоспалительных цитокинов и состояия системы энергетического обеспечения у больных ишемической болезнью сердца, осложненной хронической сердечной недостаточностью. Кардиоваскулярная терапия и профилактика 2011; 10(5): 37-42.
3. Маликов В.Е., Евсиков Е.М., Кутузова Т.Г., Рогава М. Фармакологическая коррекция симптомов и ремоделирование сердца при рефрактерных формах хронической сердечной недостаточности с дисфункцией левого желудочка. Российский кардиологический журнал 2008; 5: 56-62.
4. Сукоян Г.В. Антелава Н.А. Рациональная фармакотерапия синдрома системного воспалительного ответа при тяжелой недостаточности сердца в эксперименте. Бюлл экспер биол 2009; 4: 411-4.
5. Сукоян Г.В., Гонгадзе Н.В. Механизм кардиопротекторного действия аденоцина и кардиотонических средств негликозидной природы при хронической недостаточности сердца в эксперименте. Бюлл экспер биол 2010; 11: 541-4.
6. Сукоян Г.В., Кавадзе И.К. Влияние лекарственного средства Надцин на состояние системы энергетического обеспечения и скорость апоптоза при ишемически-реперфузионных повреждениях миокарда. Бюлл экспер биол 2008; 9: 297-300.
7. Ashrafian H, Frenneaux MP. Metabolic Mechanisms in Heart failure. Circulation 2007; 116: 434-48.
8. Coons JC, McGraw M, Murali S. Pharmacotherapy for acute heart failure syndromes Health Syst. Am J Pharm 2011; 68: 21-35.
9. Chiou Wen-Fei, Chen Ch-Ch, Wei B-L. 3,4-Di-O-Caffeoylquinic Acid Inhibits Angiotensin-II-induced Vascular Smooth Muscle Cell Proliferation and Migration by downregulating the JNK and PI3K/Akt Signaling Pathways. eCAM 2009; 3:1-8.
10. Davidson SM, Duchen MR. Endothelial Mitochondria Conributing to Vascular Function and Disease. Circ Res 2007; 100: 1128-41.
11. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial Function and Dysfunction Testing and Clinical Relevance. Circulation 2007; 115: 1285-95.
12. Dhalla NS, Saini HK, Rodriguez-Leyva D, et al. Subcellular remodeling may induced cardiac dysfunction in congestive heart failure. Cardiovasc Res 2009; 81: 429-38.
13. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res 2008; 77(2): 334-43.
14. Haag F, Adriouch S, Brab A, et al. Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signalling 2007; 3(1-2): 71-81.
15. Heymes Ch, Bendall JK, Ratajczak P. Increased myocardial NADPH оxidase аctivity in human heart failure. JACC 2003; 41(12): 2164-71.
16. Hsu C-P, Oka Sh, Hariharan N, et al. Nicotinamide Phosphoribosyltransferase Regulates Cell Survival Through NAD+ Synthesis in Cardiac Myocytes. Circ Res 2009; 105(5): 481-91.
17. May AE, Seizer P, Gawaz M. Platelets: Inflammatory Firebugs of Vascular Walls Thromb Vasc Biol 2008; 28: s5-10.
18. McDonagh TA. Challenges in Advanced Chronic Heart Failure: Drug Therapy. Future Cardiol 2008; 4: 517-25.
19. Menta D, Malik AB. Signaling Mechanisms Regulating Endothelial Permeability Physiol Rev 2006; 86: 279-367.
20. Murphy JF, Fitzgerald DJ. Vascular endothelial cell growth factor (VEGF) induces cyclooxygenase (COX)-dependant proliferation of endothelial cells (EC) via the VEGF-2 receptor. Faseb J 2001; 15(9): 1667-9.
21. Pacher P, Szabo C. Role of poly (ADP-ribose) polymerase-1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP-1 inhibitors. Cardiovasc Drug Rev 2007; 25(3): 235-60.
22. Pillai JB, Isbatan A, Imai S-I, Gupta MP. Poly (ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. Biol Chem 2005; 280: 43121-30.
23. Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010; 285(5): 3133-44.
24. Singh Girn HR, Ahilathirunayagam S, Mavor AID, Homer-Vanniasinkam Sh. Reperfusion Syndrome: Cellular Mechanisms of Microvascular Dysfunction and Potential Therapeutic Strategies. Vascular and Endovascular Surgery 2007; 41(4): 277-93.
25. Tsai BM, Wang M, Turrentine MW, et al. Hypoxic Pulmonary Vasoconstriction in Cardiothoracic Surgery: Basic Mechanisms to Potential Therapies. Ann Thorac Surg 2004; 78: 360-8.
Review
For citations:
Donetskaya O.P., Tulupova V.A., Shuldeshova N.V., Fedorova M.M. Pharmacological correction of plasma redox potential and endothelial dysfunction in ischemic heart failure. Cardiovascular Therapy and Prevention. 2012;11(1):54-58. (In Russ.) https://doi.org/10.15829/1728-8800-2012-1-54-58