Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Возможности использования стволовых клеток для лечения больных ишемической болезнью сердца. Часть I

Полный текст:

Аннотация

Сердечная недостаточность (СН) является одной из главных причин смерти больных, перенесших инфаркт миокарда (ИМ). Современные методы реперфузионной терапии острого ИМ, такие как тромболитическая терапия, хирургическая и баллонная реваскуляризация, несмотря на своевременное проведение, в ряде случаев не предупреждают образования обширных зон повреждения миокарда и развития СН [3-6]. Поэтому поиски исследователей были направлены на создание методов, позволяющих улучшить функциональное состояние поврежденных участков миокарда. В этой связи безусловный интерес вызывает клеточная терапия, целью которой служит восстановление функциональной способности сердца. В данном обзоре освещены результаты экспериментальных и клинических исследований в области клеточной терапии ишемической болезни сердца, представлена характеристика различных типов стволовых клеток, применяемых для клеточной кардиомиопластики. Обсуждены способы трансплантации клеток в миокард, потенциальные побочные действия этого способа лечения.

Об авторах

Н. С. Жукова
ФГУ Российский кардиологический научно-производственный комплекс Росздрава
Россия

ст.н.с. отдела неотложной кардиологии

Москва, Тел.: (916) 515 6602; (495) 414 6692



И. И. Староверов
ФГУ Российский кардиологический научно-производственный комплекс Росздрава
Россия

вед.н.с. отдела

Москва



Список литературы

1. Fuchs S, Baffour R, Zhou Y, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. JACC 2001; 37: 1726-32.

2. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430-6.

3. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107: 1395-402.

4. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.

5. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002; 106: 3009-17.

6. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-8.

7. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108: 2212-8.

8. Fernandez-Aviles F, San Roman JA, Garcia-Frade J. et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95: 742-8.

9. Dvash Т, Benvenisty N. Human embryonic stem cells as a model for early human development. Best Pract Res Clin Obstet Gynaecol 2004; 18: 929-40.

10. Сухих Г.Т. Трансплантация фетальных тканей и клеток: настоящее и будущее. Бюлл экспер биол мед 1998; 126 (приложение 1): 3-13.

11. Потапов И.В., Крашенинников М.Е., Онищенко Н.А. Клеточная кардиомиопластика (аналитический обзор). Вест трансплантол искус органов 2001; 2: 53-62.

12. Goldenthal MJ, Marin-Garcia J. Stem cells and cardiac disorders: an appraisal. Cardiovasc Res 2003; 58: 369-77.

13. Odorico YS, Kanfman DS, Thomson YA. Stem Cells 2001; 19: 193-204.

14. Foley A, Mercola M. Heart induction: embriology to cardiomyocyte regeneration. Trends Cardiovasc Med 2004; 14: 121-5.

15. Torella D, Ellison GM, Nadal-Ginard B, et al. Cardiac stem and progenitor cell biology for regenerative medicine. Trends Cardiovasc Med 2005; 15: 229-36.

16. Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 2004; 140(9): 729-37.

17. Bhatia M. Ac 133 expression in human stem cells. Leukemia 2001; 15: 1685-8.

18. Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001; 104(12 Suppl 1): I207-12.

19. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046-52.

20. Schachinger V, Assmus В, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Final one-year results of the TQPCAREAMI trial. JACC 2004; 44(B): 1690-9.

21. Stamm C, Westphal В, Kleine HD, et al. Autologous bone marrow transplantation for myocardial regeneration. Lancet 2003; 361: 45-6.

22. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664-8.

23. Balsam L, Wagers A, Christensen J, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428: 668-73.

24. Keating A. Bone marrow cells for cardiac repair. Biol Blood Marrow Transplant 2005; 11: 2-6.

25. Kan I, Melamed E, Offen E. Integral therapeutic potential of bone marrow mesenchymal stem cells. Curr Drug Targ 2005; 6: 31-41.

26. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-50.

27. Fukuda K, Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardia infarction in mice. Kidney Int 2005; 68: 1940-3.

28. Min J-Y, Sullivan MF, Yang Y, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg 2002; 74: 1568-75.

29. Shake JG, Gruber PJ, Baumgartner W, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002; 73: 1919-26.

30. Toma C, Pittenger MF, Cahill K, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93-8.

31. Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003; 288: 51-9.

32. Zimmet J, Hare J. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 2005; 100: 471-81.

33. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2005; 2: 8.

34. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722-9.

35. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20.

36. MiyaharaY, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardia infarction. Nat Med 2006; 12: 459-65.

37. Zhang S, Jia Z, Ge J, et al. Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental ts. Cell Transplant 2005; 14: 787-98.

38. Liu J, Hu Q, Wang Z, Xu C, et al. Autologous stem cell transplantation for myocardial repair. Am J Physiol Hear Circ Physiol 2004; 287: H501-11.

39. Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenc-hymal stem cell transplantation induce VEGF and neovascularizati-on in ischemic myocardium. Regul Pept 2004; 117: 3-10.

40. Urbich C, Dimmeler S. Endothelial progenitor cells: functional characterization. Trends Cardiovasc MED 2004; 14(8); 318-22.

41. Rupp S, Badorff C, Koyanagi M, et al. Statin therapy in patients with coronary artery desease improves the endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Res Cardiol 2004; 99; 61-8.

42. Vittet D, Prandini MH, Berthier R, et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996; 88: 3424-31.

43. Eichmann A, Corbel C, Nataf V, et al. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94: 5141-6.

44. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-80.

45. Yla-Herttuala S, Rissanen T, Vajanto I. Vascular endothelial growth factors: biology and current status of clinical application in cardiovascular medicine. JACC 2007; 49: 1015-26.

46. Ubrich C, Dimmler S. Endotelial progenitor cells: characterization and rolein vascular biology. Circ Res 2004; 95: 343-53.

47. Smadja D, Cornet A, Emmerich J, et al. Endotelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell tharapy. Cell Biol Toxicol 2007; 23(4): 223-9.

48. Dong C, Goldschmidt-Clermont P. Endotelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol 2007; 20(2):93-9.

49. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343-53.

50. Schuster MD, Kocher AA, Seki T, et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 2004; 287: H525-32.

51. Erb S, Linke A, Adams V, Lenk K, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005; 97: 756-62.

52. Hristov M, Erl V, Weber P. Endothelial progenitor cells: mobilization, differentiation and homing. Arterioscler Thromb Vasc Biol 2003; 23: 1185-9.

53. Cao Y, Hong A, Schulten H, et al. Update on therapeutic neovascularization. Cardiovasc Res 2005; 65: 639-48.

54. Sola S, Mir M, Rajagopalan S, et al. Statin therapy is associated with improved ardiovascular outcomes and levels of inflammatory markers in patients with heart failure. J Card Fail 2005; 11 (8): 607-13.

55. Bartunec J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction. Circulation 2005; 112 (suppl. I): 178-83.

56. Stamm C, Kleine H, Choy Y, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 2007; 133: 717-25.

57. Menasche P, Hagege A, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001; 357: 279-80.

58. Asakura A. Stem ceils in adult skeletal muscle. Trends Cardiovasc Med 2003; 13: 123-8.

59. Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential application. Ann Rev Physiol 1999; 61: 219-42.

60. Field L. Future therapy for cardiovascular disease. NHLBI Workshop Cell Transplantation: Future Therapy for Cardiovascular Disease. Columbia 1998. MD. 32 p.

61. Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 2000; 149: 731-40.

62. Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Nat Acad Sci USA 2003; 100: 7808-11.

63. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998; 4: 929-33.

64. Pagani F, Simonyan H, Zawadzka A, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. JACC 2003; 41(5): 879-88.

65. Menasche P. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. JACC 2003; 41:1 078-83.

66. Smits P, Van Geuns R, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. JACC 2003; 42: 2063.

67. Menasche P. Skeletal myoblast transplantation for cardiac repair. Exp Rev Cardiovasc Ther 2004; 2: 21-8.

68. Atkins BZ, Huteheson KA, Hueman MT, et al. Reversing Post-MI Dysfunction: Improved Myocardial Performance after Autologous Skeletal Myoblast Transfer to Infarcted Rabbit Heart. Circulation 1999; 100 (suppl. I): I-838.

69. Dai W, Hale S, Kloner R. Seem cell transplantation for the treatment of myocardial infarction. Transpl Immunol 2005: In Press.

70. Marrar R, Lill M, Chen P, et al. Stem cell therapy for myocardial repair: is it arrhythmogenic? JACC 2003; 42: 2070.

71. Taylor DA. Cell-based myocardial repair: how should we proceed? Int J Cardiol 2004; 95 Suppl: 8-12.

72. Abraham MR, Henrikson CA, Tung L, et al. Antiarrythmic engineering of skeletal myoblasts far cardiac transplantation. Circ Res 2005; 97 (2): 159-67.

73. Kim WH, Joo CU, Ku JH, et al. Cell cycle regulators during human atrial development. Korean J Intern Med 1998; 13(2): 77-82.

74. Anversa P, Leri A, Kajstura J, et al. Myocyte growth and cardiac repair. J Mol Cell Cordial 2002; 34; 91-105.

75. Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in endstage cardiac failure in humans. Proc Natl Acad Sci USA 1998; 95: 8801-5.

76. Anversa P, Palackal T, Sonnenblick EH, et al. Hypertensive cardiomyopatliy: myocyte nuclei hyperplasia in the mammalian rat heart. J Clin Invest 1990; 85: 994-7.

77. Urbanek К, Quaini F, Taska J, et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 2003; 100: 10440-5.

78. Beltrami СA, Finato N, Rocco M, et al. Structural basis of endstage failure in ischemia cardiomyopathy in humans. Circulation 1994;89: 151-63.

79. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344: 1750-7.

80. Olivetti G, Cigola E, Maestri R, et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion oj mononucleated and mvltimtcleated myocytes in the human heart. J Mol Cell Cardiol 1996; 128: 1463-77.

81. Urbanek K, Quaini F, Bolli R, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. PNAS 2005; 102(24): 8692-7.

82. Oh H, Wang SC, Prahash A, et al. Telomere attrition and Chk2 activation in human heart failure. PNAS 2003; 100: 5378-83.

83. Сhimenti С, Kajstura J, Torella D, et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003; 93: 604-13.

84. Van Vliet P, Sluijter JP, Dcevendans PA, et al. Isolation and expansion of resident cardiac progenitor cells. Expert Rev Cardiovasc Ther 2007; 5: 33-43.

85. Dawn В, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infracted myocardium, and improve cardiac function. Proc Natl AcadSci USA 2005; 102: 3766-71.

86. Bearzi С. Characterization and growth of human cardiac stem cells. Late-breaking developments in stem cell biology and cardiac growth regulation. Circulation 2005; 111: 1720.

87. Oh H, Bradfute SB, Gallardo ТО, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003; 100:12313-8.

88. Gilbert S. F. Developmental Biology. 6th ed, 2000.

89. Tzahor E, Lassar AB. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 2001; 15: 255-60.

90. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005; 25(11): 2321-7.

91. Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart. PNAS 2006; 103 (24): 9226-31.

92. Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005; 115: 326-38.

93. Behfar A, Zindman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16: 1558-66.

94. Kinnaird T, Stabile E, Burnett MS, et al.. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109: 1543-9.

95. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 2007; 25: 2896-902.


Для цитирования:


Жукова Н.С., Староверов И.И. Возможности использования стволовых клеток для лечения больных ишемической болезнью сердца. Часть I. Кардиоваскулярная терапия и профилактика. 2011;10(2):122-128.

For citation:


Zhukova N.S., Staroverov I.I. Stem cells in the treatment of patients with coronary heart disease. Part I. Cardiovascular Therapy and Prevention. 2011;10(2):122-128. (In Russ.)

Просмотров: 47


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)