Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Оптимальная стратегия лечения пациентов с артериальной гипертонией и атеросклерозом: фокус на олмесартана медоксомил

https://doi.org/10.15829/1728-8800-2012-3-102-112

Полный текст:

Аннотация

Сердечно-сосудистые заболевания (ССЗ) являются одной из основных причин смертности во всем мире. В США на их долю приходится более одной трети всех смертей. В основе развития ССЗ лежит атеросклероз – хронический воспалительный процесс, который проявляется клинически в виде коронарной болезни сердца (КБС), поражения сонных или периферических артерий. Ожидается, что к 2020г атеросклероз станет ведущей причиной смертности во всем мире. Это подчеркивает важность разработки новых терапевтических подходов, которые способны замедлять прогрессирование атеросклеротического процесса или приводить к его обратному развитию.
Причиной атерогенеза является повреждение эндотелия, обусловленное окислительным стрессом (ОС), который, в свою очередь, ассоциируется с такими факторами сердечно-сосудистого риска (ССР), как сахарный диабет (СД), гипертензия (АГ), курение, дислипидемия (ДЛП), ожирение (Ож) и метаболический синдром (МС). Поскольку ренин-ангиотензин-альдостероновая система (РААС) играет ключевую роль в процессе сосудистого воспаления, терапия АГ препаратами, блокирующими действие РААС (ингибиторами ангиотензин-превращающего фермента (ИАПФ) и блокаторами рецепторов к ангиотензину II (БРА)), способна уменьшать выраженность воспалительной реакции и замедлять прогрессирование атеросклероза. Снижение биодоступности оксида азота (NO) играет важную роль в патогенезе эндотелиальной дисфункции (ЭД) и АГ.
Таким образом, препараты, повышающие биодоступность NO и уменьшающие выраженность ОС (например, ИАПФ и БРА), могут оказывать антиатеросклеротическое действие. В ранее выполненных исследованиях было продемонстрировано, что блокада ангиотензиновых рецепторов 1 типа при приеме БРА улучшает функцию эндотелия и препятствует атерогенезу. У пациентов с АГ БРА олмесартана медоксомил обеспечивает эффективное снижение артериального давления (АД), а также выраженное подавление действия РААС.
Согласно результатам проспективных рандомизированных исследований, олмесартана медоксомил обладает целым рядом благоприятных сосудистых эффектов, что проявляется в замедлении прогрессирования атеросклеротического поражения коронарных артерий у пациентов со стабильной стенокардией (исследование OLIVUS); снижении уровней маркеров воспаления у больных АГ и доклиническим микровоспалением (EUTOPIA); положительной динамике толщины комплекса «интима-медия» (ТКИМ) сонных артерий (СА) и объема атеросклеротической бляшки у пациентов с диагностированным атеросклерозом (MORE); а также обратном развитии ремоделирования сосудов у больных АГ 1 ст. (VIOS). Несмотря на то, что в этих исследованиях не изучалось влияние терапии на СС исходы, отмеченный положительный эффект олмесартана медоксомила на частоту суррогатных конечных точек позволяет предположить, что в данных клинических группах пациентов этот препарат способен уменьшать частоту СС событий.

Об авторе

Р. П. Масон
Гарвардская медицинская школа, Бостон; Элюсида Ресерч, Беверли
Соединённые Штаты Америки


Список литературы

1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation. 2011; 123(4):e18–209.

2. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis(*). Ann Rev Immunol 2009; 27: 165–97.

3. Scott J. The pathogenesis of atherosclerosis and new opportunities for treatment and prevention. J Neural Transm Suppl 2002; (63):1–17.

4. Wasserman BA. Clinical carotid atherosclerosis. Neuroimaging Clin N Am 2002; 12(3): 403–19.

5. Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 2005; 64(5): 925–9.

6. Rosenfeld ME. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Z Kardiol 2000; 89(Suppl 7): 2–6.

7. Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int Angiol 2000; 19(3): 276–9.

8. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5(1): 69–80.

9. Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23(2): 233–46.

10. Staо ALLHAT trial. Curr Atheroscler Rep 2005; 7(2): 132–9.

11. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340(2):115–26.

12. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121(4 Pt 1): 1244–63.

13. Deanfield J, Donald A, Ferri C, et al. Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23(1): 7–17.

14. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997; 96(12): 4219–25.

15. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98(1):121–8.

16. Gronholdt ML, Dalager-Pedersen S, Falk E. Coronary atherosclerosis: determinants of plaque rupture. Eur Heart J 1998; 19(Suppl C): C24–9.

17. Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 2007; 27(1): 15–26.

18. Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247(3): 349–58.

19. Sakariassen KS, Barstad RM. Mechanisms of thromboembolism at arterial plaques. Blood Coagul Fibrinolysis 1993; 4(4): 615–25.

20. Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003; 10(5): 267–74.

21. Theroux P, Fuster V. Acute coronary syndromes: unstable angina and nonQ-wave myocardial infarction. Circulation 1998; 97(12): 1195–206.

22. Briasoulis A, Tousoulis D, Antoniades C, et al. The role of endothelial progenitor cells in vascular repair after arterial injury and atherosclerotic plaque development. Cardiovasc Ther. April 7, 2010. [Epub ahead of print].

23. Varagic J, Trask AJ, Jessup JA, et al. New angiotensins. J Mol Med 2008; 86(6): 663–71.

24. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol 2001; 87(8 A): 25C–32.

25. Ruiz-Ortega M, Ruperez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 2006; 21(1): 16–20.

26. Matsumoto K, Morishita R, Tomita N, et al. Improvement of endothelial dysfunction by angiotensin II blockade accompanied by induction of vascular hepatocyte growth factor system in diabetic spontaneously hypertensive rats. Heart Vessels 2003; 18(1): 18–25.

27. da Cunha V, Martin-McNulty B, Vincelette J, et al. Angiotensin II induces histomorphologic features of unstable plaque in a murine model of accelerated atherosclerosis. J Vasc Surg 2006; 44(2): 364-71.

28. David S, Kumpers P, Lukasz A, et al. Circulating angiopoietin-2 in essential hypertension: relation to atherosclerosis, vascular inflammation, and treatment with olmesartan/pravastatin. J Hypertens 2009; 27(8): 1641–7.

29. Mason RP. Nitric oxide mechanisms in the pathogenesis of global risk. J Clin Hypertens (Greenwich) 2006; 8(8 Suppl 2): 31–38; quiz 40.

30. Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology 2006; 13(3): 129–42.

31. Taddei S, Virdis A, Ghiadoni L, et al. Vitamin c improves endotheliumdependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998; 97(22): 2222–9.

32. Bautista LE. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 2003; 17(4): 223–30.

33. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004; 122(4): 339–52.

34. Gibbons GH. Endothelial function as a determinant of vascular function and structure: a new therapeutic target. Am J Cardiol 1997; 79(5A): 3–8.

35. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endotheliumdependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323(1): 22–7.

36. Mizuno Y, Jacob RF, Mason RP. Advances in pharmacologic modulation of nitric oxide in hypertension. Curr Cardiol Rep 2010; 12(6): 472–80.

37. Ferrario CM, Strawn WB. Targeting the RAAS for the treatment of atherosclerosis. Drug Discov Today Ther Strateg 2005; 2(3): 221–9.

38. Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the reninangiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007; 3(6): 937–45.

39. Mizuno Y, Jacob RF, Mason RP. Effects of calcium channel and renin-angiotensin system blockade on intravascular and neurohormonal mechanisms of hypertensive vascular disease. Am J Hypertens. 2008; 21 (10):1076–85.

40. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342(3): 145–53.

41. Pitt B, Byington RP, Furberg CD, et al. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. PREVENT Investigators. Circulation 2000; 102(13): 1503–10.

42. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004; 292(18): 2217–25.

43. Lonn E, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 2001; 103(7): 919–25.

44. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86(5): 494–501.

45. Chen CH, Ting CT, Lin SJ, et al. Different effects of fosinopril and atenolol on wave reflections in hypertensive patients. Hypertension 1995; 25(5): 1034–41.

46. Hirata K, Vlachopoulos C, Adji A, O’Rourke MF. Benefits from angiotensinconverting enzyme inhibitor ‘beyond blood pressure lowering’: beyond blood pressure or beyond the brachial artery? J Hypertens 2005; 23(3): 551–6.

47. Mason RP, Walter MF, Trumbore MW, et al. Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. J Mol Cell Cardiol 1999; 31(1): 275–81.

48. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369(9568): 1208–19.

49. Perrone-Filardi P, Corrado L, Brevetti G, et al. Effects of AT1 receptor antagonism with candesartan on endothelial function in patients with hypertension and coronary artery disease. J Clin Hypertens (Greenwich) 2009; 11(5): 260–5.

50. Koh KK, Han SH, Chung WJ, et al. Comparison of effects of losartan, irbesartan, and candesartan on flow-mediated brachial artery dilation and on inflammatory and thrombolytic markers in patients with systemic hypertension. Am J Cardiol 2004; 93(11): 1432–5, A1410.

51. Rosei EA, Rizzoni D, Muiesan ML, et al. Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulin-dependent diabetes mellitus. J Hypertens 2005; 23(2): 435–44.

52. Baguet JP, Asmar R, Valensi P, et al. Effects of candesartan cilexetil on carotid remodeling in hypertensive diabetic patients: the MITEC study. Vasc Health Risk Manag 2009; 5(1): 175–83.

53. Dasu MR, Riosvelasco AC, Jialal I. Candesartan inhibits toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis 2009; 202(1): 76–83.

54. Bragulat E, Larrousse M, Coca A, de la Sierra A. Effect of longterm irbesartan treatment on endothelium-dependent vasodilation in essential hypertensive patients. Br J Biomed Sci 2003; 60(4): 191–6.

55. von zur Muhlen B, Kahan T, Hagg A, et al. Treatment with irbesartan or atenolol improves endothelial function in essential hypertension. J Hypertens 2001; 19(10): 1813–8.

56. Makris TK, Stavroulakis GA, Krespi PG, et al. Fibrinolytic/hemostatic variables in arterial hypertension: response to treatment with irbesartan or atenolol. Am J Hypertens 2000; 13(7): 783–8.

57. Sola S, Mir MQ, Cheema FA, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 2005; 111(3): 343–8.

58. Ceriello A, Assaloni R, Da Ros R, et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation 2005; 111(19): 2518–24.

59. Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag 2008; 4(1): 89–101.

60. Gomez-Garre D, Martin-Ventura JL, Granados R, et al. Losartan improves resistance artery lesions and prevents CTGF and TGF-beta production in mild hypertensive patients. Kidney Int 2006; 69(7): 1237–44.

61. Rachmani R, Levi Z, Zadok BS, Ravid M. Losartan and lercanidipine attenuate low-density lipoprotein oxidation in patients with hypertension and type 2 diabetes mellitus: a randomized, prospective crossover study. Clin Pharmacol Ther 2002; 72(3): 302–7.

62. Flammer AJ, Hermann F, Wiesli P, et al. Effect of losartan, compared with atenolol, on endothelial function and oxidative stress in patients with type 2 diabetes and hypertension. J Hypertens 2007; 25(4): 785–91.

63. Sonoda M, Aoyagi T, Takenaka K, et al. A one-year study of the antiatherosclerotic effect of the angiotensin-II receptor blocker losartan in hypertensive patients. A comparison with angiotension-converting enzyme inhibitors. Int Heart J 2008; 49(1): 95–103.

64. Dandona P, Kumar V, Aljada A, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003; 88(9): 4496–501.

65. Manabe S, Okura T, Watanabe S, et al. Effects of angiotensin II receptor blockade with valsartan on pro-inflammatory cytokines in patients with essential hypertension. J Cardiovasc Pharmacol 2005; 46(6): 735–9.

66. Link A, Lenz M, Legner D, et al. Telmisartan inhibits beta2-integrin MAC-1 expression in human T-lymphocytes. J Hypertens 2006; 24(9): 1891– 8.

67. Brunner HR. Clinical efficacy and tolerability of olmesartan. Clin Ther 2004; 26(Suppl A): A28–32.

68. Neutel JM, Kereiakes DJ. An olmesartan medoxomil-based treatment algorithm is effective in achieving 24-hour BP control in patients with type 2 diabetes mellitus, regardless of age, race, sex, or severity of hypertension: subgroup analysis of the BENIFICIARY study. Am J Cardiovasc Drugs 2010; 10(5): 289–303.

69. Oparil S, Pimenta E. Efficacy of an olmesartan medoxomil-based treatment algorithm in patients stratified by age, race, or sex. J Clin Hypertens (Greenwich) 2010; 12(1): 3–13.

70. Kyotani Y, Zhao J, Tomita S, et al. Olmesartan inhibits angiotensin II-induced migration of vascular smooth muscle cells through Src and mitogenactivated protein kinase pathways. J Pharmacol Sci 2010; 113 (2): 161–8.

71. Shimada K, Murayama T, Yokode M, et al. Olmesartan, a novel angiotensin II type 1 receptor antagonist, reduces severity of atherosclerosis in apoli poprotein E deficient mice associated with reducing superoxide production. Nutr Metab Cardiovasc Dis. April 14, 2010. [Epub ahead of print].

72. Takai S, Jin D, Sakaguchi M, et al. The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet. J Hypertens 2005; 23(10): 1879–86.

73. Hirohata A, Yamamoto K, Miyoshi T, et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of olmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. JACC 2010; 55(10): 976–82.

74. Stumpe KO, Agabiti-Rosei E, Zielinski T, et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin IIreceptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Ther Adv Cardiovasc Dis 2007; 1(2): 97–106.

75. Smith RD, Yokoyama H, Averill DB, et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (the VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs 2006; 6(5): 335–42.

76. Fliser D, Buchholz K, Haller H. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004; 110(9): 1103–7.

77. Smith RD, Yokoyama H, Averill DB, et al. Reversal of vascular hypertrophy in hypertensive patients through blockade of angiotensin II receptors. J Am Soc Hypertens 2008; 2(3): 165–72.


Для цитирования:


Масон Р.П. Оптимальная стратегия лечения пациентов с артериальной гипертонией и атеросклерозом: фокус на олмесартана медоксомил. Кардиоваскулярная терапия и профилактика. 2012;11(3):102-112. https://doi.org/10.15829/1728-8800-2012-3-102-112

For citation:


Mason R.P. Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: focus on olmesartan medoxomil. Cardiovascular Therapy and Prevention. 2012;11(3):102-112. (In Russ.) https://doi.org/10.15829/1728-8800-2012-3-102-112

Просмотров: 44


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)