Preview

Cardiovascular Therapy and Prevention

Advanced search

Analytical complex of biochemical markers for preclinical diagnosis and prevention of cardiovascular diseases

https://doi.org/10.15829/1728-8800-2019-5-117-127

Abstract

Due to the achievements of world scientific thought, clinical diagnostic laboratories and diagnostic centers have been given the opportunity to analyze a huge number of biochemical markers of various nature, and their arsenal is replenished from year to year. This article discusses a complex of valid biomarkers, combined for the purpose of biomedical preclinical diagnosis and prevention of cardiovascular diseases. As a justification for the choice of these biochemical markers, we gave trigger processes that underlie the development of cardiovascular pathology, with which selected biochemical markers are associated. The diagnostic complex is based on the “necessity and sufficiency” principle, taking into account financial feasibility, and the ability to measure selected markers in a wide network of clinical diagnostic centers or laboratories. The review is intended to help clinicians with a view to a more detailed understanding of the initial, preclinical stages of cardiovascular diseases, as the most common cause of mortality in Russia, as well as for a wide audience studying or specializing in cardiology.

About the Author

N. G. Gumanova
National Medical Research Center for Preventive Medicine
Russian Federation

Moscow



References

1. Atkinson Jr AJ, Colburn WA, De Gruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95. doi:10.1067/mcp.2001.113989.

2. Gluud C, Gluud LL. Evidence based diagnostics. BMJ. 2005;330(7493):724-6. doi:10.1136/bmj.3307493724.

3. Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56(2):177-85. doi: 10.1373/clinchem.2009.126706.

4. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. doi:10.1016/j.redox.2015.01.002.

5. Zhong S, Li L, Shen X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. 2019; S0891-5849(19)30271-0. doi:10.1016/jReview. PubMed PMID: 30946962.

6. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138(5):S419. PMID: 10539839.

7. Thiele JR, Zeller J, Bannasch H, et al. Targeting C-Reactive Protein in Inflammatory Disease by Preventing Conformational Changes. Mediators Inflamm. 2015;372432. doi:10.1155/2015/372432.

8. Ristagno G, Fumagalli F, Bottazzi B, et al. Pentraxin 3 in Cardiovascular Disease. Front Immunol. 2019;10:823. doi:10.3389/fimmu.2019.00823. PubMed PMID: 31057548.

9. Poredos P. C-reactive protein and the risk of cardiovascular morbidity and mortality. Vasa. 2017;46(2):77-8. doi:10.1024/0301-1526/a000602.

10. Alexander CM, Landsman PB, Teutsch SM, et al. Third National Health and Nutrition Examination Survey (NHANES III); National Cholesterol Education Program (NCEP). NCEP defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes. 2003;52(5):1210-4. doi:10.2337/diabetes.52.5.1210.

11. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J Cell Physiol. 2018;233(11):8508-25. doi:10.1002/jcp.26791.

12. Bacmeister L, Schwarzl M, Warnke S, et al. Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol. 2019;114(3): 19. doi:101007/s00395-019-0722-5.

13. Rupprecht HJ, Blankenberg S, Bickel C, et al. AutoGene Investigators. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation. 2001;104(1):25-31. PMID: 11435333.

14. Jolles S, Jordan SC, Orange JS, et al. Immunoglobulins: current understanding and future directions. Clin Exp Immunol. 2014;Suppl 1:163-8. doi:10.1111/cei.12555.

15. Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. Adv Exp Med Biol. 2017;956:511-40. doi:10.1007/5584_2016_90.

16. Della Corte VD, Tuttolomondo A, Pecoraro R, et al. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine. Curr Pharm Des. 2016; 22(30):4658-68. PMID: 27160758.

17. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation. 2003;107(3):398-404. PMID: 12551862.

18. Pokharel DR, Khadka D, Sigdel M, et al. Prevalence of metabolic syndrome in Nepalese type 2 diabetic patients according to WHO, NCEP ATP III, IDF and Harmonized criteria. J Diabetes Metab Disord. 2014;13(1):104. doi:10.1186/s40200-014-0104-3.

19. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U. S. Diabetes care. 2005;28(11):2745-9. PMID: 16249550.

20. Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes. 2002;51(10):3120-7 PMID: 12351457.

21. Sattar N, Gaw A, Scherbakova O, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108(4):414-9. doi:10.1161/01.CIR.0000080897.52664.94.

22. Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245-50. doi:10.1161/01.CIR.0000140677.20606.0E.

23. Tao Z, Shi A, Zhao J. Epidemiological Perspectives of Diabetes. Cell Biochem Biophys. 2015;73(1):181-5. doi:10.1007/s12013-015-0598-4.

24. Inoue H. Central insulin-mediated regulation of hepatic glucose production [Review]. Endocr J. 2016;63(1):1-7. doi:10.1507/endocrj.EJ15-0540.

25. Brown AE, Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr Cardiol Rep. 2016;18(8):75. doi:10.1007/s11886-016-0755-4.

26. Holman GD. Chemical biology probes of mammalian GLUT structure and function. Biochemical J. 2018;475(22):3511-34. doi:10.1042/BCJ20170677.

27. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. PMID: 3899825.

28. Kim JK. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods Mol Biol. 2009;560:221-38, doi:10.1007/978-1-59745-448-3_15.

29. Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13(1):47. doi:10.1186/1472-6823-13-47.

30. Perova NV, Ozerova IN, Aleksandrovich OV, et al. Clinical value of insulin resistance in fasting normoglycemia. Kardiologiia. 2011;51(8):49-54. (In Russ.)

31. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care. 1997;20(7):1087-92. PMID: 9203442.

32. Helkin A, Stein JJ, Lin S, et al. Dyslipidemia Part 1-Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg. 2016;50(2):107-18. doi:10.1177/1538574416628654.

33. Rawla P, Sunkara T, Thandra KC, et al. Hypertriglyceridemia-induced pancreatitis: updated review of current treatment and preventive strategies. Clinical Journal of Gastroenterology. 2018;11(6):441-8. doi:10.1007/s12328-018-0881-1.

34. Alexopoulos AS, Qamar A, Hutchins K, et al. Triglycerides: Emerging Targets in Diabetes Care? Curr Diab Rep. 2019;19(4):13. doi:10.1007/s11892-019-1136-3. PMID: 30806837.

35. Roubille F, Sultan A, Huet F, et al. Is hypertriglyceridemia atherogenic? La Presse Medicale. 2018;47(9):757-63. doi:10.1016/j.lpm.2018.08.009.

36. Inayat F, Zafar F, Baig AS, et al. Hypertriglyceridemic Pancreatitis Treated with Insulin Therapy: A Comparative Review of 34 Cases. Cureus. 2018;10(10). doi:10.7759/cureus.3501.

37. Mollazadeh H, Carbone F, Montecucco F. Oxidative burden in familial hypercholesterolemia. J Cell Physiol. 2018;233(8):5716-25. doi:10.1002/jcp.26466.

38. Getz G, Reardon C. Apoprotein E and Reverse Cholesterol Transport. Int J Mol Sci. 2018;19(11):3479. doi:10.3390/ijms19113479.

39. Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. The Lancet. 2007;370(9602):1829-39. PMID: 18061058.

40. Anderson KM, Castelli WP, Levy D. Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA. 1987;257(16):2176-80.

41. Rosenson RS. The High-Density Lipoprotein Puzzle: Why Classic Epidemiology, Genetic Epidemiology, and Clinical Trials Conflict? Arterioscler Thromb Vasc Biol. 2016;36(5):777-82. doi:10.1161/ATVBAHA.116.307024.

42. Chang JC. Hemostasis based on a novel 'two-path unifying theory' and classification of hemostatic disorders. Blood Coagul Fibrinolysis. 2018;29(7):573-84. doi:10.1097/MBC.0000000000000765.

43. Asada Y, Yamashita A, Sato Y, et al. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb. 2018;25(8):653-64. doi:10.5551/jat.RV17022.

44. Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Haematol. 2008;143(2):180-90. doi:10.1111/j.1365-2141.2008.07323.x.

45. Krupiczojc MA, Scotton CJ, Chambers RC. Coagulation signaling following tissue injury: focus on the role of factor Xa. Int J Biochem Cell Biol. 2008;40(6-7):1228-37 doi:10.1016/j.biocel.2008.02.026.

46. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17-24. doi:101016/j.blre.2014.09.003.

47. Thiebaut A M, Gauberti M, Ali C, et al. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol. 2018;17(12): 1121-32. doi:10.1016/S1474-4422(18)30323-5.

48. Nijenhuis VJ, Brouwer J, Sondergaard L, et al. Antithrombotic therapy in patients undergoing transcatheter aortic valve implantation. Heart. 2019;heartjnl-2018-314313. doi:10.1136/heartjnl-2018-314313.

49. Danesh J, Lewington S, Thompson S G, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799-809. doi:10.1001/jama.294.14.1799.

50. Bridge KI, Philippou H, Ariëns RA. Clot properties and cardiovascular disease. Thromb Haemost. 2014;112(11):901-8. doi:10.1160/TH14-02-0184.


Review

For citations:


Gumanova N.G. Analytical complex of biochemical markers for preclinical diagnosis and prevention of cardiovascular diseases. Cardiovascular Therapy and Prevention. 2019;18(5):117-127. (In Russ.) https://doi.org/10.15829/1728-8800-2019-5-117-127

Views: 972


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)