Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Перспективные полимерные соединения мембраны коронарных стент-графтов

https://doi.org/10.15829/1728-8800-2020-2318

Полный текст:

Аннотация

Представлен обзор литературы, определяющий актуальность исследований, связанных с разработкой полимерной мембраны коронарного стент-графта. Новое поколение коронарных стент-графтов призвано увеличить гемосовместимость устройства и обеспечить возможность его доставки в “сложные” участки сосуда. На основании анализа результатов клинического применения коммерчески доступных изделий обозначены три группы перспективных полимеров: биостабильные полиуретаны, криогели на  основе поливинилового спирта, биорезорбируемые композиции на основе полилактида-капролактона и  сополимера молочной и  гликолевой кислот, однако вопрос возможности их применения требует проведения экспериментальных работ.

Об авторах

М. А. Резвова
ФГБНУ “Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний”
Россия

Резвова Мария Александровна — младший научный сотрудник лаборатории новых биоматериалов

Кемерово



Е. А. Овчаренко
ФГБНУ “Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний”
Россия

Овчаренко Евгений Андреевич — кандидат технических наук, заведующий отделом организации инновационных и клинических исследований, заведующий лабораторией 

Кемерово



К. Ю. Клышников
ФГБНУ “Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний”
Россия

Клышников Кирилл Юрьевич — научный сотрудник лаборатории новых биоматериалов

Кемерово



Ю. А. Кудрявцева
ФГБНУ “Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний”
Россия

Кудрявцева Юлия Александровна — заведующий отделом экспериментальной и клинической кардиологии

Кемерово



Список литературы

1. Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull. 2013;106(1):193-211. doi:10.1093/bmb/ldt009.

2. Алекян Б.Г., Григорьян А.М., Стаферов А.В. и др. Рентгенэндоваскулярная диагностика и лечение заболеваний сердца и сосудов в Российской Федерации — 2017 год. Эндоваскулярная хирургия. 2018;2(5):93-240. doi:10.24183/2409-4080-2018-5-2-93-240.

3. Rao G, Sheth S, Grines C. Percutaneous coronary intervention: 2017 in review. J Intervent Cardiol. 2018;31(2):117-28. doi:10.1111/joic.12508.

4. Lemmert ME, van Bommel RJ, Diletti R, et al. Clinical Characteristics and Management of Coronary Artery Perforations: A Single-Center 11-Year Experience and Practical Overview. J Am Heart Assoc. 2017;6(9):e007049. doi:10.1161/JAHA.117.007049.

5. Ellis SG, Ajluni S, Arnold AZ, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90(6):2725-30. doi:10.1161/01.cir.90.6.2725.

6. Aykan A, Guler A, Gul I, et al. Management and outcomes of coronary artery perforations during percutaneous treatment of acute coronary syndromes. Perfusion. 2014;30(1):71-6. doi:10.1177/0267659114530456.

7. Panduranga P, Riyami A, Riyami M, et al. Coronary perforation and covered stents: An update and review. Heart Views. 2011;12(2):63. doi:10.4103/1995-705x.86017.

8. Jamshidi P, Mahmoody K, Erne P. Covered stents: A review. Int J Cardiol. 2008;130(3):310-18. doi:10.1016/j.ijcard.2008.04.083.

9. Takano M, Yamamoto M, Inami S, et al. Delayed endothelialization after polytetrafluoroethylene-covered stent implantation for coronary aneurysm. Circ J. 2009;73(1):190-3. doi:10.1253/circj.cj-07-0924.

10. Briguori C, Nishida T, Anzuini A, et al. Emergency Polytetra - fluoroethylene-Covered Stent Implantation to Treat Coronary Ruptures. Circulation. 2000;102(25):3028-31. doi:10.1161/01.cir.102.25.3028.

11. Ly H, Awaida JP, Lesperance J, et al. Angiographic and clinical outcomes of polytetrafluoroethylene-covered stent use in significant coronary perforations. Am J Cardiol. 2005;95:244-6. doi:10.1016/j.amjcard.2004.09.010.

12. Chen S, Lotan C, Jaffe R, et al. Pericardial covered stent for coronary perforations. Catheter Cardiovasc Interv. 2015;86:400- 4. doi:10.1002/ccd.26011.

13. Agathos EA, Tomos PI, Kostomitsopoulos N, et al. Calcitonin as an anticalcification treatment for implantable biological tissues. J Cardiol. 2019;73(2):179-82. doi:10.1016/j.jjcc.2018.07.010.

14. Murarka S, Hatler C, Heuser RR, et al. Polytetrafluoroethylenecovered stents: 15 years of hope, success and failure. Expert Rev Cardiovasc Ther. 2010;8(5):645-50. doi:10.1586/erc.10.37.

15. Bennett J, Dens J, Stammen F, et al. Long-term follow-up after percutaneous coronary intervention with polytetrafluoroethylenecovered Symbiot stents compared to bare metal stents, with and without FilterWire embolic protection, in diseased saphenous vein grafts. Acta Cardiol. 2013;68(1):1-9. doi:10.2143/AC.68.1.2959625.

16. Lee WC, Hsueh SK, Fang CY, et al. Clinical Outcomes Following Covered Stent for the Treatment of Coronary Artery Perforation. J Interv Cardiol. 2016;29(6):569-75. doi:10.1111/joic.12347.

17. Gercken U, Lansky AJ, Buellesfeld L, et al. Results of the Jostent coronary stent graft implantation in various clinical settings: Procedural and follow-up results. Catheter. Cardiovasc Interv. 2002;56:353-60. doi:10.1002/ccd.10223.

18. Kufner S, Schaher N, Ferenc M, et al. Outcome after new generation single-layer polytetrafluoroethylene-covered stent implantation for the treatment of coronary artery perforation. Catheter Cardiovasc Inerv. 2019;93(5):912-20. doi:10.1002/ccd.27979.

19. Gruberg L, Pinnow E, Flood R, et al. Incidence, management, and outcome of coronary artery perforation during percutaneous coronary intervention. Am J Cardiol. 2000;86:680-2. doi:10.1016/S0002-9149(00)01053-5.

20. Wang HJ, Lin JJ, Lo WY, et al. Clinical Outcomes of Poly - tetrafluoroethylene-Covered Stents for Coronary Artery Per - foration in Elderly Patients Undergoing Percutaneous Coronary Interventions. Acta Cardiol Sin. 2017;33(6):605-13. doi:10.6515/ACS20170625A.

21. Kwok OH, Ng W, Chow WH. Late stent thrombosis after successful rescue of a major coronary artery rupture with a polytetrafluoroethylene-covered stent. J Invasive Cardiol. 2001;13(5):391-4.

22. Jokhi PP, McKenzie DB, O’Kane P. Use of a novel pericardial covered stent to seal an iatrogenic coronary perforation. J Invasive Cardiol. 2009;21:187-90.

23. Secco GG, Serdoz R, Kilic ID, et al. Indications and immediate and long-term results of a novel pericardium covered stent graft: Consecutive 5 year single center experience. Catheter Cardiovasc Interv. 2015;87(4):712-9. doi:10.1002/ccd.26131.

24. Kandzari DE, Birkemeyer R. PK Papyrus covered stent: Device description and early experience for the treatment of coronary artery perforations. Catheter Cardiovasc Interv. 2019;Early View:1-5. doi:10.1002/ccd.28306.

25. Hernandez-Enriquez M, Lairez O, Campelo-Parada F, et al. Outcomes after use of covered stents to treat coronary artery perforations. Com parison of old and new-generation covered stents. J Interv Cardiol. 2018;5:617-23. doi:10.1111/joic.12525.

26. Templin C, Meyer M, Müller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 2010;31(14):1792-801. doi:10.1093/eurheartj/ehq168.

27. Barsotti MC, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Bioc. 2011;58(5):301- 10. doi:10.1002/bab.49.

28. Wu C, An Q, Li D, et al. A novel heparin loaded poly(l-lactide-cocaprolactone) covered stent for aneurysm therapy. Materials Letters. 2014;116:39-42. doi:10.1016/j.matlet.2013.10.018.

29. Jiang T, Wang G, Qiu J, et al. Heparinized poly(vinyl alcohol)–small intestinal submucosa composite membrane for coronary covered stents. Biomed Mater. 2009;4(2):025012. doi:10.1088/1748-6041/4/2/025012.

30. Weaver JD, Ku DN. Mechanical Evaluation of Polyvinyl Alcohol Cryogels for Covered Stents. J Med Dev. 2010;4(3):031002. doi:10.1115/1.4001863.

31. Chen T, Lancaster M, Lin DS, et al. Measurement of Frictional Properties of Aortic Stent Grafts and Their Delivery Systems. J Med Dev. 2019;13(2):021008(9 pages). doi:10.1115/1.4043292.

32. Joseph J, Patel RM, Wenham A, et al. Biomedical applications of polyurethane materials and coatings. Transactions of the IMF. 2019;96(3):121-9. doi:10.1080/00202967.2018.1450209.

33. Wang W, Wang C. Polyurethane for biomedical applications: A review of recent developments. The Design and Manufacture of Medical Devices. 2012;115-51. doi:10.1533/9781908818188.115.

34. Jaffer IH, Fredenburgh JC, Hirsh J, et al. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015;13:72-81. doi:10.1111/jth.12961.

35. Mahomed A, Hukins DWL, Kukureka SN, et al. Effect of accelerated aging on the viscoelastic properties of Elast-Eon™: A polyurethane with soft poly(dimethylsiloxane) and poly(hexamethylene oxide) segments. Materials Science and Engineering: C. 2010;30(8):1298-303. doi:10.1016/j.msec.2010.07.014.

36. Cozzens D, Luk A, Ojha U, et al. Surface Characterization and Protein Interactions of Segmented Polyisobutylene-Based Thermoplastic Polyurethanes. Langmuir. 2011;27(23):14160-8. doi:10.1021/la202586j.

37. Brisbois EJ, Davis RP, Jones AM, et al. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-NitrosoN-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep. J Mater Chem B. 2015;3(8):1639-45. doi:10.1039/C4TB02036G.

38. Dang TT, Nikkhah M, Memic A, et al. Polymeric Biomaterials for Implantable Prostheses. Natural and Synthetic Biomedical Polymers. 2014;309-31. doi:10.1016/b978-0-12-396983-5.00020-x.

39. Muppalaneni S. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J Dev Drugs. 2013;02(03):112. doi:10.4172/2329-6631.1000112.

40. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4(7):1228-33. doi:10.1016/j.jmbbm.2011.04.005.

41. Tsvetkova EA, Ukhartseva IYu. Polyvinyl alcohol cryogels as the matrix for biomaterials. Plasticheskie Massy. 2015;11-12:53-6. doi:10.1177/0307174X1604301009.

42. Mohammadi H, Boughner D, Millon LE, et al. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng H. 2009;223:697-711. doi:10.1243/09544119JEIM493.

43. Lin MC, Lou CW, Lin JY, et al. Fabrication of a Biodegradable Multi-layered Polyvinyl Alcohol Stent. Fibers and Polymers. 2018;19(8):1596-604. doi:10.1007/s12221-018-8141-z.

44. Conconi MT, Borgio L, Di Liddo R, et al. Evaluation of vascular grafts based on polyvinyl alcohol cryogels. Mol Med Rep. 2014;10(3):1329-34. doi:10.3892/mmr.2014.2348.

45. Abraham A, Soloman PA, Rejini VO. Preparation of ChitosanPolyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technology. 2016;24:741-8. doi:10.1016/j.protcy.2016.05.206.

46. Merkle VM, Zeng L, Slepian MJ, et al. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers. 2014;101(4):336-46. doi:10.1002/bip.22367.

47. Gahlot S, Kulshrestha V, Agarwal G, et al. Synthesis and Characterization of PVA/GO Nanocomposite Films. Macromolecular Symposia. 2015;357(1):173-7. doi:10.1002/masy.201400220.

48. Vrana NE, Cahill PA, McGuinness GB. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions. J Biomed Mater Res Part A. 2010;94:1080-90. doi:10.1002/jbm.a.32790.

49. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polymer Physics. 2011;49(12):832-64. doi:10.1002/polb.22259.

50. Ngadiman NHA, Noordin MY, Idris A, et al. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H. 2017;231(7):597-616. doi:10.1177/0954411917699021.

51. Niu L, Feng C, Shen C, et al. PLGA/PLCA casting and PLGA/ PDPA electrospinning bilayer film for prevention of postoperative adhesion. J Biomed Mater Res B Part B. 2018;107(6):2030-9. doi:10.1002/jbm.b.34294.

52. McDonald PF, Lyons JG, Geever LM, et al. In vitro degradation and drug release from polymer blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone). J Mater Scien. 2009;45(5):1284-92. doi:10.1007/s10853-009-4080-9.

53. Zhu X, Zhong T, Huang R, et al. Preparation of hydrophilic poly (lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)- (PEG) solution casting and thermal-induced surface structural transformation. J Biomater Sci Polym Ed. 2015;26(17):1286-96. doi:10.1080/09205063.2015.1088125.

54. Nardo T, Chiono V, Gentile P, et al. Poly(DL-lactide-co-εcaprolactone) and poly(DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, andin vitrodegradation behavior. Int J Polym Mater. 2016;65(14):741-50. doi:10.1080/00914037.2016.1163566.


Для цитирования:


Резвова М.А., Овчаренко Е.А., Клышников К.Ю., Кудрявцева Ю.А. Перспективные полимерные соединения мембраны коронарных стент-графтов. Кардиоваскулярная терапия и профилактика. 2020;19(3):2318. https://doi.org/10.15829/1728-8800-2020-2318

For citation:


Rezvova M.A., Ovcharenko E.A., Klyshnikov K.Yu., Kudryavtseva Y.A. Promising polymeric compounds for coronary stent graft membrane. Cardiovascular Therapy and Prevention. 2020;19(3):2318. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2318

Просмотров: 55


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)