Preview

Cardiovascular Therapy and Prevention

Advanced search

Promising polymeric compounds for coronary stent graft membrane

https://doi.org/10.15829/1728-8800-2020-2318

Abstract

The literature review discusses the studies on developing the polymer membrane of a coronary stent graft. The new generation of coronary stent grafts is designed to increase the hemocompatibility and ensure its delivery to poorly accessible artery regions. Based on the clinical use results, three groups of promising polymers were identified: biostable polyurethanes, polyvinyl alcohol-based cryogels, bioresorbable compositions based on polylactide-caprolactone and lactic acid-glycolic acid copolymer. However, the possibility of their clinical application requires further experimental studying.

About the Authors

M. A. Rezvova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


Yu. A. Kudryavtseva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


References

1. Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull. 2013;106(1):193-211. doi:10.1093/bmb/ldt009.

2. Alekyan BG, Grigoryan AM, Staferov AV, et al. X-ray endovascular diagnosis and treatment of heart and vascular diseases in the Russian Federation — 2017. Endovascular surgery. 2018;2(5):93- 240. (In Russ.) doi:10.24183/2409-4080-2018-5-2-93-240.

3. Rao G, Sheth S, Grines C. Percutaneous coronary intervention: 2017 in review. J Intervent Cardiol. 2018;31(2):117-28. doi:10.1111/joic.12508.

4. Lemmert ME, van Bommel RJ, Diletti R, et al. Clinical Characteristics and Management of Coronary Artery Perforations: A Single-Center 11-Year Experience and Practical Overview. J Am Heart Assoc. 2017;6(9):e007049. doi:10.1161/JAHA.117.007049.

5. Ellis SG, Ajluni S, Arnold AZ, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90(6):2725-30. doi:10.1161/01.cir.90.6.2725.

6. Aykan A, Guler A, Gul I, et al. Management and outcomes of coronary artery perforations during percutaneous treatment of acute coronary syndromes. Perfusion. 2014;30(1):71-6. doi:10.1177/0267659114530456.

7. Panduranga P, Riyami A, Riyami M, et al. Coronary perforation and covered stents: An update and review. Heart Views. 2011;12(2):63. doi:10.4103/1995-705x.86017.

8. Jamshidi P, Mahmoody K, Erne P. Covered stents: A review. Int J Cardiol. 2008;130(3):310-18. doi:10.1016/j.ijcard.2008.04.083.

9. Takano M, Yamamoto M, Inami S, et al. Delayed endothelialization after polytetrafluoroethylene-covered stent implantation for coronary aneurysm. Circ J. 2009;73(1):190-3. doi:10.1253/circj.cj-07-0924.

10. Briguori C, Nishida T, Anzuini A, et al. Emergency Polytetra - fluoroethylene-Covered Stent Implantation to Treat Coronary Ruptures. Circulation. 2000;102(25):3028-31. doi:10.1161/01.cir.102.25.3028.

11. Ly H, Awaida JP, Lesperance J, et al. Angiographic and clinical outcomes of polytetrafluoroethylene-covered stent use in significant coronary perforations. Am J Cardiol. 2005;95:244-6. doi:10.1016/j.amjcard.2004.09.010.

12. Chen S, Lotan C, Jaffe R, et al. Pericardial covered stent for coronary perforations. Catheter Cardiovasc Interv. 2015;86:400- 4. doi:10.1002/ccd.26011.

13. Agathos EA, Tomos PI, Kostomitsopoulos N, et al. Calcitonin as an anticalcification treatment for implantable biological tissues. J Cardiol. 2019;73(2):179-82. doi:10.1016/j.jjcc.2018.07.010.

14. Murarka S, Hatler C, Heuser RR, et al. Polytetrafluoroethylenecovered stents: 15 years of hope, success and failure. Expert Rev Cardiovasc Ther. 2010;8(5):645-50. doi:10.1586/erc.10.37.

15. Bennett J, Dens J, Stammen F, et al. Long-term follow-up after percutaneous coronary intervention with polytetrafluoroethylenecovered Symbiot stents compared to bare metal stents, with and without FilterWire embolic protection, in diseased saphenous vein grafts. Acta Cardiol. 2013;68(1):1-9. doi:10.2143/AC.68.1.2959625.

16. Lee WC, Hsueh SK, Fang CY, et al. Clinical Outcomes Following Covered Stent for the Treatment of Coronary Artery Perforation. J Interv Cardiol. 2016;29(6):569-75. doi:10.1111/joic.12347.

17. Gercken U, Lansky AJ, Buellesfeld L, et al. Results of the Jostent coronary stent graft implantation in various clinical settings: Procedural and follow-up results. Catheter. Cardiovasc Interv. 2002;56:353-60. doi:10.1002/ccd.10223.

18. Kufner S, Schaher N, Ferenc M, et al. Outcome after new generation single-layer polytetrafluoroethylene-covered stent implantation for the treatment of coronary artery perforation. Catheter Cardiovasc Inerv. 2019;93(5):912-20. doi:10.1002/ccd.27979.

19. Gruberg L, Pinnow E, Flood R, et al. Incidence, management, and outcome of coronary artery perforation during percutaneous coronary intervention. Am J Cardiol. 2000;86:680-2. doi:10.1016/S0002-9149(00)01053-5.

20. Wang HJ, Lin JJ, Lo WY, et al. Clinical Outcomes of Poly - tetrafluoroethylene-Covered Stents for Coronary Artery Per - foration in Elderly Patients Undergoing Percutaneous Coronary Interventions. Acta Cardiol Sin. 2017;33(6):605-13. doi:10.6515/ACS20170625A.

21. Kwok OH, Ng W, Chow WH. Late stent thrombosis after successful rescue of a major coronary artery rupture with a polytetrafluoroethylene-covered stent. J Invasive Cardiol. 2001;13(5):391-4.

22. Jokhi PP, McKenzie DB, O’Kane P. Use of a novel pericardial covered stent to seal an iatrogenic coronary perforation. J Invasive Cardiol. 2009;21:187-90.

23. Secco GG, Serdoz R, Kilic ID, et al. Indications and immediate and long-term results of a novel pericardium covered stent graft: Consecutive 5 year single center experience. Catheter Cardiovasc Interv. 2015;87(4):712-9. doi:10.1002/ccd.26131.

24. Kandzari DE, Birkemeyer R. PK Papyrus covered stent: Device description and early experience for the treatment of coronary artery perforations. Catheter Cardiovasc Interv. 2019;Early View:1-5. doi:10.1002/ccd.28306.

25. Hernandez-Enriquez M, Lairez O, Campelo-Parada F, et al. Outcomes after use of covered stents to treat coronary artery perforations. Com parison of old and new-generation covered stents. J Interv Cardiol. 2018;5:617-23. doi:10.1111/joic.12525.

26. Templin C, Meyer M, Müller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 2010;31(14):1792-801. doi:10.1093/eurheartj/ehq168.

27. Barsotti MC, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Bioc. 2011;58(5):301- 10. doi:10.1002/bab.49.

28. Wu C, An Q, Li D, et al. A novel heparin loaded poly(l-lactide-cocaprolactone) covered stent for aneurysm therapy. Materials Letters. 2014;116:39-42. doi:10.1016/j.matlet.2013.10.018.

29. Jiang T, Wang G, Qiu J, et al. Heparinized poly(vinyl alcohol)–small intestinal submucosa composite membrane for coronary covered stents. Biomed Mater. 2009;4(2):025012. doi:10.1088/1748-6041/4/2/025012.

30. Weaver JD, Ku DN. Mechanical Evaluation of Polyvinyl Alcohol Cryogels for Covered Stents. J Med Dev. 2010;4(3):031002. doi:10.1115/1.4001863.

31. Chen T, Lancaster M, Lin DS, et al. Measurement of Frictional Properties of Aortic Stent Grafts and Their Delivery Systems. J Med Dev. 2019;13(2):021008(9 pages). doi:10.1115/1.4043292.

32. Joseph J, Patel RM, Wenham A, et al. Biomedical applications of polyurethane materials and coatings. Transactions of the IMF. 2019;96(3):121-9. doi:10.1080/00202967.2018.1450209.

33. Wang W, Wang C. Polyurethane for biomedical applications: A review of recent developments. The Design and Manufacture of Medical Devices. 2012;115-51. doi:10.1533/9781908818188.115.

34. Jaffer IH, Fredenburgh JC, Hirsh J, et al. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015;13:72-81. doi:10.1111/jth.12961.

35. Mahomed A, Hukins DWL, Kukureka SN, et al. Effect of accelerated aging on the viscoelastic properties of Elast-Eon™: A polyurethane with soft poly(dimethylsiloxane) and poly(hexamethylene oxide) segments. Materials Science and Engineering: C. 2010;30(8):1298-303. doi:10.1016/j.msec.2010.07.014.

36. Cozzens D, Luk A, Ojha U, et al. Surface Characterization and Protein Interactions of Segmented Polyisobutylene-Based Thermoplastic Polyurethanes. Langmuir. 2011;27(23):14160-8. doi:10.1021/la202586j.

37. Brisbois EJ, Davis RP, Jones AM, et al. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-NitrosoN-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep. J Mater Chem B. 2015;3(8):1639-45. doi:10.1039/C4TB02036G.

38. Dang TT, Nikkhah M, Memic A, et al. Polymeric Biomaterials for Implantable Prostheses. Natural and Synthetic Biomedical Polymers. 2014;309-31. doi:10.1016/b978-0-12-396983-5.00020-x.

39. Muppalaneni S. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J Dev Drugs. 2013;02(03):112. doi:10.4172/2329-6631.1000112.

40. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4(7):1228-33. doi:10.1016/j.jmbbm.2011.04.005.

41. Tsvetkova EA, Ukhartseva IYu. Polyvinyl alcohol cryogels as the matrix for biomaterials. Plasticheskie Massy. 2015;11-12:53-6. doi:10.1177/0307174X1604301009.

42. Mohammadi H, Boughner D, Millon LE, et al. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng H. 2009;223:697-711. doi:10.1243/09544119JEIM493.

43. Lin MC, Lou CW, Lin JY, et al. Fabrication of a Biodegradable Multi-layered Polyvinyl Alcohol Stent. Fibers and Polymers. 2018;19(8):1596-604. doi:10.1007/s12221-018-8141-z.

44. Conconi MT, Borgio L, Di Liddo R, et al. Evaluation of vascular grafts based on polyvinyl alcohol cryogels. Mol Med Rep. 2014;10(3):1329-34. doi:10.3892/mmr.2014.2348.

45. Abraham A, Soloman PA, Rejini VO. Preparation of ChitosanPolyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technology. 2016;24:741-8. doi:10.1016/j.protcy.2016.05.206.

46. Merkle VM, Zeng L, Slepian MJ, et al. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers. 2014;101(4):336-46. doi:10.1002/bip.22367.

47. Gahlot S, Kulshrestha V, Agarwal G, et al. Synthesis and Characterization of PVA/GO Nanocomposite Films. Macromolecular Symposia. 2015;357(1):173-7. doi:10.1002/masy.201400220.

48. Vrana NE, Cahill PA, McGuinness GB. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions. J Biomed Mater Res Part A. 2010;94:1080-90. doi:10.1002/jbm.a.32790.

49. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polymer Physics. 2011;49(12):832-64. doi:10.1002/polb.22259.

50. Ngadiman NHA, Noordin MY, Idris A, et al. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H. 2017;231(7):597-616. doi:10.1177/0954411917699021.

51. Niu L, Feng C, Shen C, et al. PLGA/PLCA casting and PLGA/ PDPA electrospinning bilayer film for prevention of postoperative adhesion. J Biomed Mater Res B Part B. 2018;107(6):2030-9. doi:10.1002/jbm.b.34294.

52. McDonald PF, Lyons JG, Geever LM, et al. In vitro degradation and drug release from polymer blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone). J Mater Scien. 2009;45(5):1284-92. doi:10.1007/s10853-009-4080-9.

53. Zhu X, Zhong T, Huang R, et al. Preparation of hydrophilic poly (lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)- (PEG) solution casting and thermal-induced surface structural transformation. J Biomater Sci Polym Ed. 2015;26(17):1286-96. doi:10.1080/09205063.2015.1088125.

54. Nardo T, Chiono V, Gentile P, et al. Poly (DL-lactide-co-εcaprolactone) and poly (DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, andin vitrodegradation behavior. Int J Polym Mater. 2016;65(14):741-50. doi:10.1080/00914037.2016.1163566.


Review

For citations:


Rezvova M.A., Ovcharenko E.A., Klyshnikov K.Yu., Kudryavtseva Yu.A. Promising polymeric compounds for coronary stent graft membrane. Cardiovascular Therapy and Prevention. 2020;19(3):2318. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2318

Views: 669


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)