Preview

Cardiovascular Therapy and Prevention

Advanced search

Prospects for Raman spectroscopy in cardiology

https://doi.org/10.15829/1728-8800-2020-1-2394

Abstract

Raman spectroscopy (RS) is a promising diagnostic method with high informative value and sensitivity. In addition, it is non-destructive and minimally invasive, and also requires minimal sample preparation, which opens up wide prospects for in vitro and in vivo use. There are some perspectives for this method in future cardiology practice. RS may allow to identify previously studied markers of cardiovascular disease, as well as to search for new ones. It is a sensitive method for the detection and biochemical assessment of early-stage atherosclerotic lesions and can be used in vivo. Of great interest is the possibility of using the RS to control the amount of eluted substance from drug-eluting stents to assess clinical efficacy. Study of platelet membranes using the RS technique revealed structural changes in patients with hypertension. This method makes it possible to assess myocardial viability in the border zone after myocardial infarction, and the obtained results correlate with the intraoperative data. More details about the prospects of using the RS will be described in the review.

About the Authors

V. V. Rafalsky
Immanuel Kant Baltic Federal University
Russian Federation

Kaliningrad



A. Yu. Zyubin
Immanuel Kant Baltic Federal University
Russian Federation

Kaliningrad



E. M. Moiseeva
Immanuel Kant Baltic Federal University
Russian Federation

Kaliningrad



I. G. Samusev
Immanuel Kant Baltic Federal University
Russian Federation

Kaliningrad



References

1. Timmis A, Gale CP, Flather M, et al. Cardiovascular disease statistics from the European atlas: inequalities between high- and middle-income member countries of the ESC. Eur Heart J Qual Care Clin Outcomes. 2018;4(1):1-3. doi:10.1093/ehjqcco/qcx045.

2. Collaborators GBDR. The burden of disease in Russia from 1980 to 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10153):1138-46. doi:10.1016/S0140-6736(18)31485-5.

3. Росстат. Число умерших по основным классам причин смерти 2019. Available from: http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/population/demography/#.

4. Moore TJ, Moody AS, Payne TD, et al. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. Biosensors (Basel). 2018;8(2). doi:10.3390/bios8020046.

5. Germond A, Kumar V, Ichimura T, et al. Raman spectroscopy as a tool for ecology and evolution. J R Soc Interface. 2017; 14(131): 20170174. doi:10.1098/rsif.2017.0174.

6. Brozek-Pluska B, Kopec M, Surmacki J, et al. Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies. Analyst. 2015;140(7):2134-43. doi:10.1039/c4an01877j.

7. Langer J, Jimenez de Aberasturi D, et al. Present and Future of Surface Enhanced Raman Scattering. ACS Nano. 2019. doi:10.1021/acsnano.9b04224.

8. da Costa SG, Richter A, Schmidt U, et al. Confocal Raman microscopy in life sciences. Morphologie. 103(341):11-6. doi:10.1016/j.morpho.2018.12.003.

9. Jia M, Li S, Zang L, et al. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. Nanomaterials (Basel). 2018; 15;8(9). pii: E730. doi:10.3390/nano8090730.

10. Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst. 2015;140(2):386-406. doi:10.1039/c4an01079e.

11. Brozek-Pluska B, Musial J, Kordek R, et al. Analysis of Human Colon by Raman Spectroscopy and Imaging-Elucidation of Biochemical Changes in Carcinogenesis. Int J Mol Sci. 2019;20(14). doi:10.3390/ijms20143398.

12. Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys Chem Chem Phys. 2015;17(33):21072-93. doi:10.1039/c4cp04946b.

13. Beleites C1, Bonifacio A, Codrich D, et al. Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics. Curr Med Chem. 2013;20(17):2176-87. doi:10.2174/0929867311320170003.

14. Atkins CG, Buckley K, Blades MW, et al. Raman Spectroscopy of Blood and Blood Components. Appl Spectrosc. 2017;71(5):767-93. doi:10.1177/0003702816686593.

15. Krafft C, Popp J. The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem. 2015;407(3):699-717. doi:10.1007/s00216-014-8311-9.

16. Windgassen EB1, Funtowicz L, Lunsford TN, et al. C-reactive protein and high-sensitivity C-reactive protein: an update for clinicians Postgrad Med. 2011; 123(1):114-9. doi:10.3810/pgm.2011.01.2252.

17. Guo W, Hu Y, Wei H. Enzymatically activated reduction-caged SERS reporters for versatile bioassays. Analyst. 2017;142(13):2322-6. doi:10.1039/c7an00552k.

18. McKie PM, Burnett JC, Jr. NT-proBNP: The Gold Standard Biomarker in Heart Failure. J Am Coll Cardiol. 2016;68(22):2437-9. doi:10.1016/j.jacc.2016.10.001.

19. He Y, Wang Y, Yang X, et al. Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide. ACS Appl Mater Interfaces. 2016;8(12):7683-90. doi:10.1021/acsami.6b01112.

20. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome.Ann Transl Med. 2016; 4(10):194. doi:10.21037/atm.2016.05.19.

21. El-Said WA, Fouad DM, El-Safty SA. Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensor Actuat B-Chem. 2016;228:401-9. doi:10.1016/j.snb.2016.01.041.

22. Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med. 2018;62:75-88. doi:10.1016/j.mam.2017.11.007.

23. Folestad E, Kunath A, Wagsater D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med. 2018;62:1-11. doi:10.1016/j.mam.2018.01.005.

24. Yang H, Zhao C, Li R, et al. Noninvasive and prospective diagnosis of coronary heart disease with urine using surface-enhanced Raman spectroscopy. Analyst. 2018;143(10):2235-42. doi:10.1039/c7an02022h.

25. Chon H, Lee S, Yoon SY,et al. SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun (Camb). 2014;50(9):1058-60. doi:10.1039/c3cc47850e.

26. Chen YX, Chen MW, Lin JY, et al. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy. J Appl Spectrosc+. 2016;83(5):798-804. doi:10.1007/s10812-016-0366-2.

27. Saeed B, Banerjee S, Brilakis ES. Slow flow after stenting of a coronary lesion with a large lipid core plaque detected by near-infrared spectroscopy. EuroIntervention. 2010;6(4):545. doi:10.4244/EIJ30V6I4A90.

28. Matthaus C, Dochow S, Egodage KD, et al. Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model. J Biomed Opt. 2018;23(1):1-6. doi:10.1117/1.JBO.23.1.015004.

29. Suter MJ1, Nadkarni SK, Weisz G, et al. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging. 2011;4(9):1022-39. doi:10.1016/j.jcmg.2011.03.020.

30. MacRitchie N, Grassia G, Noonan J, et al. Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering. Heart. 2018;104(6):460-7. doi:10.1136/heartjnl-2017-311447

31. You AF, Bergholt MS, St-Pierre JP, et al. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci Adv. 2017;3(12):e1701156. doi:10.1126/sciadv.1701156.

32. Dixon SR, Grines CL, Munir A, et al. Analysis of target lesion length before coronary artery stenting using angiography and near-infrared spectroscopy versus angiography alone. Am J Cardiol. 2012;109(1):60-6. doi:10.1016/j.amjcard.2011.07.068.

33. Noonan J, Asiala SM, Grassia G, et al. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Theranostics. 2018;8(22):6195-209. doi:10.7150/thno.28665.

34. Bowey K, Tanguay JF, Sandros MG, et al. Microwave-assisted synthesis of surface-enhanced Raman scattering nanoprobes for cellular sensing. Colloids Surf B Biointerfaces. 2014;122:617-22. doi:10.1016/j.colsurfb.2014.07.040.

35. Chandra P, Mahajan AU, Bulani VD, et al. Pharmacokinetic Study of Sirolimus-Eluting BioResorbable Vascular Scaffold System for Treatment of De Novo Native Coronary Lesions: A Sub-Study of MeRes-1 Trial. Cardiol Res. 2018;9(6):364-9. doi:10.14740/cr799.

36. Balss KM, Long FH, Veselov V, et al. Multivariate analysis applied to the study of spatial distributions found in drug-eluting stent coatings by confocal Raman microscopy. Annal Chem. 2008;80(13):4853-9. doi:10.1021/ac7025767.

37. Garcia-Rubio DL, de la Mora MB, Badillo-Ramirez I, et al. Analysis of platelets in hypertensive and normotensive individuals using Raman and Fourier transform infrared-attenuated total reflectance spectroscopies. J Raman Spectrosc. 2019;50(4):509-21. doi:10.1002/jrs.5540.

38. Cerecedo D, Martinez-Vieyra I, Sosa-Peinado A, et al. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets. Bba-Biomembranes. 2016;1858(8):1891-903. doi:10.1016/j.bbamem.2016.04.015.

39. Rubina S, Krishna CM. Raman spectroscopy in cervical cancers: an update. J Cancer Res Ther. 2015;11(1):10-7. doi:10.4103/0973-1482.154065.

40. Patel P, Ivanov A, Ramasubbu K. Myocardial Viability and Revascularization: Current Understanding and Future Directions. Current atherosclerosis reports. 2016;18(6):32. doi:10.1007/s11883-016-0582-5

41. Ker WDS, Nunes THP, Nacif MS, et al. Practical Implications of Myocardial Viability Studies. Arq Bras Cardiol. 2018;110(3):278-88. doi:10.5935/abc.20180051.

42. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;28;364(17):1617-25. doi:10.1056/NEJMoa1100358.

43. Yamamoto T, Minamikawa T, Harada Y, et al. Label-free Evaluation of Myocardial Infarct in Surgically Excised Ventricular Myocardium by Raman Spectroscopy. Sci Rep. 2018;8(1):14671. doi:10.1038/s41598-018-33025-6.

44. Birech Z, Mwangi PW, Bukachi F, et al. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies. PLoS One. 2017;12(9):e0185130. doi:10.1371/journal.pone.0185130.

45. Loomis SJ, Li M, Maruthur NM, et al. Genome-Wide Association Study of Serum Fructosamine and Glycated Albumin in Adults Without Diagnosed Diabetes: Results From the Atherosclerosis Risk in Communities Study. Diabetes. 2018;67(8):1684-96. doi:10.2337/db17-1362.

46. Dingari NC, Horowitz GL, Kang JW, et al. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One. 2012;7(2):e32406. doi:10.1371/journal.pone.0032406.

47. Gonzalez-Solis JL, Villafan-Bernal JR, Martinez-Zerega BE, et al. Type 2 diabetes detection based on serum sample Raman spectroscopy. Lasers Med Sci. 2018;33(8):1791-7. doi:10.1007/s10103-018-2543-4.

48. Li D-W, Zhai W-L, Li Y-T, et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta. 2013;181(1-2):23-43. doi:10.1007/s00604-013-1115-3.

49. Nickelsparg EI. Study of cytochrome c in living mitochondria. Nature. 2016;(3):17-25. (In Russ.)


Review

For citations:


Rafalsky V.V., Zyubin A.Yu., Moiseeva E.M., Samusev I.G. Prospects for Raman spectroscopy in cardiology. Cardiovascular Therapy and Prevention. 2020;19(1):70-77. (In Russ.) https://doi.org/10.15829/1728-8800-2020-1-2394

Views: 3925


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)