Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Радионуклидная диагностика кардиотоксичности, индуцированной химиотерапией

https://doi.org/10.15829/1728-8800-2021-2537

Аннотация

Высокая эффективность современной химиотерапии позволила добиться больших успехов в лечении онкологических заболеваний. Побочные эффекты со стороны сердечно-сосудистой системы являются основным недостатком противоопухолевой терапии, часто требующей использования низких и менее эффективных доз или даже прекращения приема препарата. Методы радионуклидной диагностики наиболее чувствительны в плане раннего выявления повреждения и дисфункции миокарда левого желудочка на фоне химиотерапии. В данном обзоре представлены современные данные о возможностях радионуклидной оценки кардиотоксичности.

Об авторах

А. А. Аншелес
ФГБУ Национальный медицинский исследовательский центр кардиологии Минздрава России
Россия

Алексей Аркадьевич Аншелес — доктор медицинских наук, старший научный сотрудник отдела радионуклидной диагностики и ПЭТ.

Москва, Тел.: +7 (926) 363-76-66



И. В. Сергиенко
ФГБУ Национальный медицинский исследовательский центр кардиологии Минздрава России
Россия

Игорь Владимирович Сергиенко — доктор медицинских наук, главный научный сотрудник лаборатории фенотипов атеросклероза.

Москва



Ю. А. Прус
ФГБУ Национальный медицинский исследовательский центр кардиологии Минздрава России
Россия

Юлия А. Прус — аспирант, лаборант-исследователь лаборатории фенотипов атеросклероза.

Москва



В. Б. Сергиенко
ФГБУ Национальный медицинский исследовательский центр кардиологии Минздрава России
Россия

Владимир Борисович Сергиенко — доктор медицинских наук, профессор, руководитель отдела радионуклидной диагностики и ПЭТ.

Москва



Список литературы

1. Pudil R. The Future Role of Cardio-oncologists. Card Fail Rev. 2017;3(2):140-2. doi:10.15420/cfr.2017:16:1.

2. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14-25. doi:10.1093/jnci/djp440.

3. Smith LA, Cornelius VR, Plummer CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337. doi:10.1186/1471-2407-10-337.

4. Mitani I. Doxorubicin cardiotoxicity: Prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol. 2003;10(2):132-9. doi:10.1067/mnc.2003.7.

5. Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13(1):1-10. doi:10.1093/eurjhf/hfq213.

6. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77-84. doi:10.1016/j.jacc.2012.09.035.

7. Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768-801. doi: 10.1093/eurheartj/ehw211.

8. Sanft T, Denlinger CS, Armenian S, et al. NCCN Guidelines Insights: Survivorship, Version 2.2019. J Natl Compr Canc Netw. 2019;17(7):784-94. doi:10.6004/jnccn.2019.0034.

9. Chung R, Ghosh AK, Banerjee A. Cardiotoxicity: precision medicine with imprecise definitions. Open Heart. 2018;5(2):e000774. doi:10.1136/openhrt-2018-000774.

10. Dorosz JL, Lezotte DC, Weitzenkamp DA, et al. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and metaanalysis. J Am Coll Cardiol. 2012;59(20):1799-808. doi:10.1016/j.jacc.2012.01.037

11. Santoro C, Arpino G, Esposito R, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930-6. doi:10.1093/ehjci/jex033.

12. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with twodimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. doi:10.1016/s0002-9149(02)02381-0.

13. Gulati G, Heck SL, Rosjo H, et al. Neurohormonal Blockade and Circulating Cardiovascular Biomarkers During Anthracycline Therapy in Breast Cancer Patients: Results From the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) Study. J Am Heart Assoc. 2017;6(11):e006513. doi:10.1161/JAHA.117.006513.

14. Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. J Clin Oncol. 2017;35(8):870-7 doi:10.1200/JCO.2016.68.7830.

15. Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171-90. doi:10.1016/j.annonc.2019.10.023.

16. D’Amore C, Gargiulo P, Paolillo S, et al. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014;6(7):486-92. doi:10.4329/wjr.v6.i7486.

17. Walker J, Bhullar N, Fallah-Rad N, et al. Role of Three-Dimensional Echocardiography in Breast Cancer: Comparison With TwoDimensional Echocardiography, Multiple-Gated Acquisition Scans, and Cardiac Magnetic Resonance Imaging. J Clin Oncol. 2010;28(21):3429-36. doi:10.1200/jco.2009.26.7294.

18. van Royen N, Jaffe CC, Krumholz HM, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843-50. doi:10.1016/s0002-9149(97)89179-5.

19. Nousiainen T, Jantunen E, Vanninen E, et al. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer. 2002;86(11):1697-700. doi:10.1038/sj.bjc.6600346.

20. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869-79. doi:10.1002/cncr.11407.

21. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200. doi:10.1093/eurheartj/ehw128.

22. Farrell MB, Galt JR, Georgoulias P, et al. SNMMI Procedure Standards/EANM Guideline for Gated Equilibrium Radionuclide Angiocardiography. J Nucl Med Technol. 2020;48:126-35. doi:10.2967/jnmt.120.246405.

23. Hacker M, Hoyer X, Kupzyk S, et al. Clinical validation of the gated blood pool SPECT QBS® processing software in congestive heart failure patients: correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imaging. 2005;22(3-4):407-16. doi:10.1007/s10554-005-9031-1.

24. Agostini D, Marie PY, Ben-Haim S, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43(13):2423-32. doi:10.1007/s00259-016-3467-5.

25. Carrio I, Estorch M, Berna L, et al. Early assessment of doxorubicin cardiotoxicity with 111In-antimyosin and 123I-MIBG studies. J Nucl Cardiol. 1995;2(2):S25. doi:10.1016/s1071-3581(05)80188-6.

26. Estorch M, Carrio I, Martfnez-Duncker D, et al. Myocyte cell damage after administration of doxorubicin or mitoxantrone in breast cancer patients assessed by indium 111 antimyosin monoclonal antibody studies. Journal of Clinical Oncology. 1993;11(7):1264-8. doi:10.1200/jco.1993.11.7.1264.

27. Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RFA, et al. Usefulness of indium-111 antimyosin scintigraphy in confirming myocardial injury in patients with anthracycline-associated left ventricular dysfunction. Ann Oncol. 1994;5(7):617-22. doi:10.1093/oxfordjournals.annonc.a058933.

28. Triposkiadis F, Karayannis G, Giamouzis G, et al. The Sympathetic Nervous System in Heart Failure. J Am Coll Cardiol. 2009;54(19):1747-62. doi:10.1016/j.jacc.2009.05.015.

29. de Korte MA, de Vries EGE, Lub-de Hooge MN, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046-51. doi:10.1016/j.ejca.2007.06.024.

30. Rudlowski C, Werner R, Becker A. Trastuzumab and Breast Cancer. N Engl J Med. 2001;345(13):995-8. doi: 10.1056/nejm200109273451312.

31. Perik PJ, Lub-De Hooge MN, Gietema JA, et al. Indium-111-Labeled Trastuzumab Scintigraphy in Patients With Human Epidermal Growth Factor Receptor 2 — Positive Metastatic Breast Cancer. J Clin Oncol. 2006;24(15):2276-82. doi:10.1200/jco.2005.03.8448.

32. Peker C, Sarda-Mantel L, Loiseau P, et al. Imaging apoptosis with (99m)Tc-annexin-V in experimental subacute myocarditis. J Nucl Med. 2004;45(6):1081-6.

33. Bennink RJ, van den Hoff MJ, van Hemert FJ, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med. 2004;45(5):842-8.

34. Panjrath GS, Patel V, Valdiviezo CI, et al. Potentiation of Doxorubicin Cardiotoxicity by Iron Loading in a Rodent Model. J Am Coll Cardiol. 2007;49(25):2457-64. doi:10.1016/j.jacc.2007.02.060.

35. Saito K, Takeda K, Imanaka-Yoshida K, et al. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: Comparative study with myocardial perfusion, left ventricular function, and histopathological findings. Ann Nucl Med. 2003;17(6):481-8. doi:10.1007/bf03006439.

36. Nensa F, Kloth J, Tezgah E, et al. Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2018;25(3):785-94. doi:10.1007/s12350-016-0616-y.

37. Lee JC, Platts DG, Huang Y-TT, et al. Positron emission tomography combined with computed tomography as an integral component in evaluation of primary cardiac lymphoma. Clin Cardiol. 2010;33(6):E106-8. doi:10.1002/clc.20725.

38. Borde C, Kand P, Basu S. Enhanced myocardial fluorodeo-xyglucose uptake following Adriamycin-based therapy: Evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 2012;4(5):220-3. doi:10.4329/wjr.v4.i5.220.

39. Bauckneht M, Ferrarazzo G, Fiz F, et al. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational (18)F-FDG PET/CT Observation. J Nucl Med. 2017;58(10):1638-45. doi:10.2967/jnumed.117.191122.

40. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C] hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol. 1999;84(5):568-74. doi: 10.1016/s0002-9149(99)00379-3.

41. Abidov A, Germano G, Hachamovitch R, et al. Gated SPECT in assessment of regional and global left ventricular function: an update. J Nucl Cardiol. 2013;20(6): 1118-43; quiz 1144-6. doi:10.1007/s12350-013-9792-1.

42. Safee ZM, Baark F, Waters ECT, et al. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected (99m)Tc sestamibi SPECT. Sci Rep. 2019;9(1):216. doi:10.1038/s41598-018-36721-5.

43. Piwnica-Worms D, Kronauge JF, Chiu ML. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. J Nucl Med. 1991; 32(10):1992-9.

44. Chaiswing L, Cole MP, St Clair DK, et al. Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol Pathol. 2004;32(5):536-47. doi:10.1080/01926230490502601.

45. Prus Y, Sergienko I, Ansheles A, et al. Effect Of Chemotherapy On Myocardial Perfusion And Function. Atherosclerosis. 2019;287:e253. doi:10.1016/j.atherosclerosis.2019.06.779.

46. Mohan HK, Miles KA. Cost-effectiveness of 99mTc-sestamibi in predicting response to chemotherapy in patients with lung cancer: systematic review and meta-analysis. J Nucl Med. 2009;50(3):376-81. doi:10.2967/jnumed.108.055988.

47. Carboni GP. A novel clinical indicator using cardiac technetium-99m sestamibi kinetics for evaluating cardiotoxicity in cancer patients treated with multiagent chemotherapy. Am J Cardiovasc Dis. 2012;2(4):293-300.

48. Matsuo S, Nakajima K, Kinuya S. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics. Asia Ocean J Nucl Med Biol. 2013;1(1):39-43. doi:10.7508/aojnmb.2013.01.008.

49. Popat S, Smith IE. Therapy Insight: anthracyclines and trastuzumab-the optimal management of cardiotoxic side effects. Nat Clin Prac Oncol. 2008;5(6):324-35. doi:10.1038/ncponc1090.

50. McGowan JV, Chung R, Maulik A, et al. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75. doi:10.1007/s10557-016-6711-0.


Дополнительные файлы

Рецензия

Для цитирования:


Аншелес А.А., Сергиенко И.В., Прус Ю.А., Сергиенко В.Б. Радионуклидная диагностика кардиотоксичности, индуцированной химиотерапией. Кардиоваскулярная терапия и профилактика. 2021;20(2):2537. https://doi.org/10.15829/1728-8800-2021-2537

For citation:


Ansheles A.A., Sergienko I.V., Prus Yu.A., Sergienko V.B. Nuclear imaging of chemotherapy-induced cardiotoxicity. Cardiovascular Therapy and Prevention. 2021;20(2):2537. https://doi.org/10.15829/1728-8800-2021-2537

Просмотров: 525


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)