Preview

Cardiovascular Therapy and Prevention

Advanced search

Nuclear imaging of chemotherapy-induced cardiotoxicity

https://doi.org/10.15829/1728-8800-2021-2537

Abstract

The high efficiency of modern chemotherapy has made it possible to achieve great success in the treatment of cancer. Cardiovascular adverse effects are a major disadvantage of anticancer therapy, often requiring low and less effective doses or even drug withdrawal. Nuclear imaging techniques are the most sensitive in early detection of left ventricular damage and dysfunction during chemotherapy. This review presents modern data on the potential of nuclear imaging of cardiotoxicity.

About the Authors

A. A. Ansheles
National Medical Research Center of Cardiology
Russian Federation

Moscow



I. V. Sergienko
National Medical Research Center of Cardiology
Russian Federation

Moscow



Yu. A. Prus
National Medical Research Center of Cardiology
Russian Federation

Moscow



V. B. Sergienko
National Medical Research Center of Cardiology
Russian Federation

Moscow



References

1. Pudil R. The Future Role of Cardio-oncologists. Card Fail Rev. 2017;3(2):140-142. doi: 10.15420/cfr.2017:16:1

2. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14-25. doi: 10.1093/jnci/djp440

3. Smith LA, Cornelius VR, Plummer CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337-337. doi: 10.1186/1471-2407-10-337

4. Mitani I. Doxorubicin cardiotoxicity: Prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. Journal of Nuclear Cardiology. 2003;10(2):132-139. doi: 10.1067/mnc.2003.7

5. Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13(1):1-10. doi: 10.1093/eurjhf/hfq213

6. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77-84. doi: 10.1016/j.jacc.2012.09.035

7. Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768-2801. doi: 10.1093/eurheartj/ehw211

8. Sanft T, Denlinger CS, Armenian S, et al. NCCN Guidelines Insights: Survivorship, Version 2.2019. J Natl Compr Canc Netw. 2019;17(7):784-794. doi: 10.6004/jnccn.2019.0034

9. Chung R, Ghosh AK, Banerjee A. Cardiotoxicity: precision medicine with imprecise definitions. Open Heart. 2018;5(2):e000774. doi: 10.1136/openhrt-2018-000774

10. Dorosz JL, Lezotte DC, Weitzenkamp DA, et al. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;59(20):1799-1808. doi: 10.1016/j.jacc.2012.01.037

11. Santoro C, Arpino G, Esposito R, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930-936. doi: 10.1093/ehjci/jex033

12. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. doi: 10.1016/s0002-9149(02)02381-0

13. Gulati G, Heck SL, Rosjo H, et al. Neurohormonal Blockade and Circulating Cardiovascular Biomarkers During Anthracycline Therapy in Breast Cancer Patients: Results From the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) Study. J Am Heart Assoc. 2017;6(11). doi: 10.1161/JAHA.117.006513

14. Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. J Clin Oncol. 2017;35(8):870-877. doi: 10.1200/JCO.2016.68.7830

15. Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171-190. doi: 10.1016/j.annonc.2019.10.023

16. D'Amore C, Gargiulo P, Paolillo S, et al. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014;6(7):486-492. doi: 10.4329/wjr.v6.i7.486

17. Walker J, Bhullar N, Fallah-Rad N, et al. Role of Three-Dimensional Echocardiography in Breast Cancer: Comparison With Two-Dimensional Echocardiography, Multiple-Gated Acquisition Scans, and Cardiac Magnetic Resonance Imaging. Journal of Clinical Oncology. 2010;28(21):3429-3436. doi: 10.1200/jco.2009.26.7294

18. van Royen N, Jaffe CC, Krumholz HM, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843-850. doi: 10.1016/s0002-9149(97)89179-5

19. Nousiainen T, Jantunen E, Vanninen E, et al. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer. 2002;86(11):1697-1700. doi: 10.1038/sj.bjc.6600346

20. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869-2879. doi: 10.1002/cncr.11407

21. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-2200. doi: 10.1093/eurheartj/ehw128

22. Malhotra S. SNMMI Procedure Standards/EANM Guideline for Gated Equilibrium Radionuclide Angiocardiography. 2020.

23. Hacker M, Hoyer X, Kupzyk S, et al. Clinical validation of the gated blood pool SPECT QBS® processing software in congestive heart failure patients: correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imaging. 2005;22(3-4):407-416. doi: 10.1007/s10554-005-9031-1

24. Agostini D, Marie PY, Ben-Haim S, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43(13):2423-2432. doi: 10.1007/s00259-016-3467-5

25. Carrio I, Estorch M, Berna L, et al. Early assessment of doxorubicin cardiotoxicity with 111In-antimyosin and 123I-MIBG studies. Journal of Nuclear Cardiology. 1995;2(2):S25-S25. doi: 10.1016/s1071-3581(05)80188-6

26. Estorch M, Carrió I, Martínez-Duncker D, et al. Myocyte cell damage after administration of doxorubicin or mitoxantrone in breast cancer patients assessed by indium 111 antimyosin monoclonal antibody studies. Journal of Clinical Oncology. 1993;11(7):1264-1268. doi: 10.1200/jco.1993.11.7.1264

27. Valdés Olmos RA, ten Bokkel Huinink WW, ten Hoeve RFA, et al. Usefulness of indium-111 antimyosin scintigraphy in confirming myocardial injury in patients with anthracycline-associated left ventricular dysfunction. Annals of Oncology. 1994;5(7):617-622. doi: 10.1093/oxfordjournals.annonc.a058933

28. Triposkiadis F, Karayannis G, Giamouzis G, et al. The Sympathetic Nervous System in Heart Failure. J Am Coll Cardiol. 2009;54(19):1747-1762. doi: 10.1016/j.jacc.2009.05.015

29. de Korte MA, de Vries EGE, Lub-de Hooge MN, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. European Journal of Cancer. 2007;43(14):2046-2051. doi: 10.1016/j.ejca.2007.06.024

30. Rudlowski C, Werner R, Becker A. Trastuzumab and Breast Cancer. New England Journal of Medicine. 2001;345(13):995-998. doi: 10.1056/nejm200109273451312

31. Perik PJ, Lub-De Hooge MN, Gietema JA, et al. Indium-111–Labeled Trastuzumab Scintigraphy in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer. Journal of Clinical Oncology. 2006;24(15):2276-2282. doi: 10.1200/jco.2005.03.8448

32. Peker C, Sarda-Mantel L, Loiseau P, et al. Imaging apoptosis with (99m)Tc-annexin-V in experimental subacute myocarditis. J Nucl Med. 2004;45(6):1081-1086.

33. Bennink RJ, van den Hoff MJ, van Hemert FJ, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med. 2004;45(5):842-848.

34. Panjrath GS, Patel V, Valdiviezo CI, et al. Potentiation of Doxorubicin Cardiotoxicity by Iron Loading in a Rodent Model. J Am Coll Cardiol. 2007;49(25):2457-2464. doi: 10.1016/j.jacc.2007.02.060

35. Saito K, Takeda K, Imanaka-Yoshida K, et al. Assessment of fatty acid metabolism in taxan-induced myocardial damage with iodine-123 BMIPP SPECT: Comparative study with myocardial perfusion, left ventricular function, and histopathological findings. Ann Nucl Med. 2003;17(6):481-488. doi: 10.1007/bf03006439

36. Nensa F, Kloth J, Tezgah E, et al. Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2018;25(3):785-794. doi: 10.1007/s12350-016-0616-y

37. Lee JC, Platts DG, Huang Y-TT, et al. Positron emission tomography combined with computed tomography as an integral component in evaluation of primary cardiac lymphoma. Clin Cardiol. 2010;33(6):E106-E108. doi: 10.1002/clc.20725

38. Borde C, Kand P, Basu S. Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: Evidence of early chemotherapeutic cardiotoxicity? World Journal of Radiology. 2012;4(5):220-223. doi: 10.4329/wjr.v4.i5.220

39. Bauckneht M, Ferrarazzo G, Fiz F, et al. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational (18)F-FDG PET/CT Observation. J Nucl Med. 2017;58(10):1638-1645. doi: 10.2967/jnumed.117.191122

40. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol. 1999;84(5):568-574.

41. Abidov A, Germano G, Hachamovitch R, et al. Gated SPECT in assessment of regional and global left ventricular function: an update. J Nucl Cardiol. 2013;20(6):1118-1143; quiz 1144-1116. doi: 10.1007/s12350-013-9792-1

42. Safee ZM, Baark F, Waters ECT, et al. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected (99m)Tc sestamibi SPECT. Sci Rep. 2019;9(1):216. doi: 10.1038/s41598-018-36721-5

43. Piwnica-Worms D, Kronauge JF, Chiu ML. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. J Nucl Med. 1991;32(10):1992-1999.

44. Chaiswing L, Cole MP, St Clair DK, et al. Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol Pathol. 2004;32(5):536-547. doi: 10.1080/01926230490502601

45. Prus Y, Sergienko I, Ansheles A, et al. Effect Of Chemotherapy On Myocardial Perfusion And Function. Atherosclerosis. 2019;287:e253. doi: 10.1016/j.atherosclerosis.2019.06.779

46. Mohan HK, Miles KA. Cost-effectiveness of 99mTc-sestamibi in predicting response to chemotherapy in patients with lung cancer: systematic review and meta-analysis. J Nucl Med. 2009;50(3):376-381. doi: 10.2967/jnumed.108.055988

47. Carboni GP. A novel clinical indicator using cardiac technetium-99m sestamibi kinetics for evaluating cardiotoxicity in cancer patients treated with multiagent chemotherapy. Am J Cardiovasc Dis. 2012;2(4):293-300.

48. Matsuo S, Nakajima K, Kinuya S. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics. Asia Ocean J Nucl Med Biol. 2013;1(1):39-43. doi: 10.7508/aojnmb.2013.01.008

49. Popat S, Smith IE. Therapy Insight: anthracyclines and trastuzumab—the optimal management of cardiotoxic side effects. Nature Clinical Practice Oncology. 2008;5(6):324-335. doi: 10.1038/ncponc1090

50. McGowan JV, Chung R, Maulik A, et al. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75. doi: 10.1007/s10557-016-6711-0


Supplementary files

Review

For citations:


Ansheles A.A., Sergienko I.V., Prus Yu.A., Sergienko V.B. Nuclear imaging of chemotherapy-induced cardiotoxicity. Cardiovascular Therapy and Prevention. 2021;20(2):2537. https://doi.org/10.15829/1728-8800-2021-2537

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)