Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Валидные кардиоспецифические биохимические маркеры. Часть II

https://doi.org/10.15829/1728-8800-2020-2588

Полный текст:

Аннотация

Настоящая публикация является продолжением обзора, посвященного кардиоспецифическим биомаркерам, одобренным FDA (Food and Drug Administration), США, включая анализ результатов проспективных исследований и клинических испытаний, данных метаанализов и систематических обзоров. В первой части наряду с изложением общих понятий, определений и классификации биомаркеров приведены данные о диагностических и прогностических биомаркерах сердечнососудистых заболеваний, связанных с атеросклерозом. Во второй части обзора рассматриваются одобренные FDA валидные кардиоспецифические биомаркеры с оценкой их диагностической значимости, сложившейся на сегодняшний день в клинической практике.

Об авторах

Н. Г. Гуманова
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Министерства России
Россия

Надежда Георгиевна Гуманова — кандидат биологических наук, ведущий научный сотрудник отдела изучения биохимических маркеров риска хронических неинфекционных заболеваний.

Москва



М. В. Климушина
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Министерства России
Россия

Марина Вячеславовна Климушина — кандидат биологических наук, старший научный сотрудник отдела.

Москва



Н. Л. Богданова
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Министерства России
Россия

Наталья Леонидовна Богданова — лаборант-исследователь отдела.

Москва



О. В. Стефанюк
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Министерства России
Россия

Оксана Владимировна Стефанюк — научный сотрудникотдела.

Москва



В. А. Метельская
ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Министерства России
Россия

Виктория Алексеевна Метельская — доктор биологических наук, профессор, главный научный сотрудник отдела.

Москва


Список литературы

1. Barker PE. Cancer biomarker validation: standards and process: roles for the National Institute of Standards and Technology (NIST). Ann NY Acad Sci. 2003;983:142-50. doi:10.1111/j.1749-6632.2003.tb05969.x.

2. Vasan RS. Biomarkers of cardiovascular disease. Molecular basis and practical considerations. Circulation. 2006;113:2335-62. doi:10.1161/CIRCULATIONAHA.104.482570.

3. Filatov VL, Katrukha AG, Bulargina TV, et al. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc). 1999;64(9):969-85.

4. Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010. 56(2): 177-85. doi: 10.1373/clinchem.2009.126706.

5. McRae AD, Innes G, Graham M, et al. Undetectable concentrations of a Food and Drug Administration-approved high-sensitivity cardiac troponin T assay to rule out acute myocardial infarction at emergency department arrival. Acad Emerg Med. 2017;24(10):1267-77 doi:10.1111/acem.13229.

6. Gilstrap LG, Wang TJ. Biomarkers and cardiovascular risk assessment for primary prevention: an update. Clin Chem. 2012;58(1):72-82. doi: 10.1373/ clinchem.2011.165712.

7. Christenson RH, Phillips D. Sensitive and high sensitivity next generation cardiac troponin assays: More than just a name. Pathology. 2011;43:213-9. doi:10.1097/PAT.0b013e328343762d.

8. Scirica BM. Acute coronary syndrome: Emerging tools for diagnosis and risk assessment. J Am Coll Cardiol. 2010;55:1403-15. doi:10.1016/j.jacc.2009.09.071.

9. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med. 2016;4( 10): 194. doi: 10.21037/atm.2016.05.19.

10. Sandoval Y, Nowak R, deFilippi C, et al. Myocardial infarction risk stratification with a single measurement of high-sensitivity troponin I. J Am Coll Cardiol. 2019;74(3):271-82. doi:10.1016/j.jacc.2019.05.058.

11. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304(22):2503-12. doi:10.1001/jama.2010.1768.

12. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010; 304(22):2494-502. doi:10.1001/jama.2010.1708.

13. Hoogeveen RC, Gaubatz JW, Sun W, et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34(5):1069-77. doi:10.1161/ATVBAHA.114.303284.

14. Ndrepepa G, Braun S, Schuiz S, et al. High-sensitivity troponin T level and angiographic severity of coronary artery disease. Am J Cardiol. 2011;108. doi:10.1016/j.amjcard.2011.04.012.

15. Oemrawsingh RM, Cheng JM, Garcla-Garcla HM, et al. High-sensitivity troponin T in relation to coronary plaque characteristics in patients with stable coronary artery disease; results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;247 doi:10.1016/j.atherosclerosis.2016.02.012.

16. Daniels L, Clopton P, deFilippi C, et al. Serial measurement of N-terminal pro-B-type natriuretic peptide and cardiac troponin T for cardiovascular disease risk assessmentin the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2015;170(6):1170-83. doi:10.1016/j.ahj.2015.09.010.

17. Tanglay Y, Twerenbold R, Lee G, et al. Incremental value of a single high-sensitivity cardiac troponin I measurement to rule out myocardial ischemia. Am J Med. 2015;128(6):638-46. doi:10.1016/j.amjmed.2015.01.009.

18. Darche FF, Baumgartner C, Biener M, et al. Comparative accuracy of NT-proBNP and MR-proANP for the diagnosis of acute heart failure in dyspnoeic patients. ESC Heart Fail. 2017;4:232-40. doi:10.1002/ehf2.12150.

19. Lumsden NG, Khambata RS, Hobbs AJ. C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des. 2010;16(37):4080-8. doi:10.2174/138161210794519237.

20. Gaggin HK, Januzzi JL Jr. The past, the present, and the future of natriuretic peptides in the diagnosis of heart failure. Eur Heart J. Suppl. 2018;20:G11 -20. doi:10.1093/eurheartj/suy024.

21. Vanderheyden M, Bartunek J, Goethals M. Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail. 2004;6(3):261-8. doi: 10.1016/j.ejheart.2004.01.004.

22. Semenov A, Katrukha A. Different susceptibility of B-type natriuretic peptide (BNP) and BNP precursor (proBNP) to cleavage by neprilysin: The N-Terminal part does matter. 2016. Clin Chem. 2016;62(4):617-22. doi: 101373/clinchem.2016.25452.4.

23. van Hateren AA, Kleefstra N, Groenier KH, et al. Comparison of midregional Pro-A-type natriuretic peptide and the N-terminal pro-B-type natriuretic peptide for predicting mortality and cardiovascular events. Clin Chem. 2012;58(1):293-7. doi:10.1373/clinchem.2011.166348.

24. Cui K, Huang W, Fan J, et al. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure patients with preserved ejection fraction. Medicine (Baltimore). 2018;97(36):e12277. doi:10.1097/MD.0000000000012277.

25. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012:14(8):803-69. doi:101093/eurjhf/hfs105.

26. Melander O, Newton-Cheh C, Agren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49-57. doi:10.1001/jama.2009.943.

27. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655-6. doi:101056/NEJMoa031994.

28. Foote RS, Pearlman JD, Siegel AH, et al. Detection of exercise-induced ischemia by changes in B-type natriuretic peptides. J Am Coll Cardiol. 2004;44:1980-7. doi:10.1016/j.jacc.2004.08.045.

29. Weber M, Mitrovic V, Hamm C. B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide — diagnostic role in stable coronary artery disease. Belgrade Satellite Symposium. Exp Clin Cardiol. 2006;11(2):99-101.

30. McDonagh TA, Cunningham AD, Morrison CE, et al. Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population. Heart. 2001;86(1):21-6. doi:10.1136/heart.86.1.21.

31. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur J Heart Fail. 2016;18:891-975. doi:10.1002/ejhf.592.

32. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147-239. doi:10.1016/j.jacc.2013.05.019.

33. Weber M, Dill T, Arnold R, et al. N-terminal b-type natriuretic peptide predicts extent of coronary artery disease and ischemia in patients with stable angina pectoris. Am Heart J. 2004;148(4):612-20. doi:10.1016/j.ahj.2004.04.021.

34. Wolber T, Maeder M, Rickli H, et al. N-terminal pro-brain natriuretic peptide used for the prediction of coronary artery stenosis. Eur J Clin Invest. 2007;37(1):18-25. doi:10.1111/j.1365-2362.2007.01731.x.

35. Gupta DK, Daniels LB, Cheng S, et al. Differences in Natriuretic peptide levels by race/ethnicity (From the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol. 2017;120(6):1008-15. doi:10.1016/j.amjcard.2017.06.030.

36. Liu CY, Heckbert SR, Lai S, et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2017;70(25):3102-09. doi:10.1016/j.jacc.2017.10.044.

37. Matsushita K, Kwak L, Yang C, et al. High-sensitivity cardiac troponin and natriuretic peptide with risk of lower-extremity peripheral artery disease: the Atherosclerosis Risk in Communities (ARIC) Study. Eur Heart J. 2018;39(25):2412-9. doi:10.1093/eurheartj/ehy106.

38. Mueller T, Jaffe AS. Soluble ST2 — analytical considerations. Am J Cardiol. 2015;115(7):8B-21B. doi:10.1016/j.amjcard.2015.01.035.

39. Tominaga S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 1989;258:301-4. doi:10.1016/0014-5793(89)81679-5.

40. Weinberg EO, Shimpo M, De Keulenaer G, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002; 106(23):2961-6. doi: 10.1161/01.cir.0000038705.69871.d9.

41. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479-90. doi:10.1016/j.immuni.2005.09.015.

42. Maisel AS, Di Somma S. Do we need another heart failure biomarker: focus on soluble suppression of tumorigenicity 2 (sST2). Eur Heart J. 2017;38:2325-32. doi:10.1093/eurheartj/ehw462.

43. Tung Y, Chu P-H. Soluble ST2: A Novel Prognostic Biomarker of Heart Failure. Acta Cardiol Sin. 2014;30:501-3.

44. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Futur Cardiol. 2014;10:525-39. doi:10.2217/fca.14.36.

45. Januzzi JL Jr, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) Study. J Am Coll Cardiol. 2007;50:607-13. doi:10.1016/j.jacc.2007.05.014.

46. Lassus J, Gayat E, Mueller C, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on acute heart failure (MOCA) Study. Int J Cardiol. 2013;168:2186-94. doi:10.1016/j.ijcard.2013.01.228.

47. Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Hear Fail. 2011;4(2): 180-7. doi: 101161/CIRCHEARTFAILURE.110.958223.

48. Dieplinger B, Egger M, Haltmayer M, et al. Increased soluble ST2 predicts longterm mortality in patients with stable coronary artery disease: results from the ludwigshafen risk and cardiovascular health study. Clin Chem. 2014;60(3):530-40. doi:10.1373/clinchem.2013.209858.

49. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538-49. doi:101172/JCI30634.

50. Ciccone MM, Cortese F, Gesualdo M, et al. A novel cardiac biomarker: ST2: a review. Molecules. 2013;18(12):15314-28. doi:10.3390/molecules181215314.

51. Mueller T, Dieplinger B. The Presage(®) ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn. 2013;13(1):13-30. doi:10.1586/erm.12.128.

52. Wu AH, Wians F, Jaffe A. Biologic variation of galectin-3 and soluble ST2 for chronic Health failure: implication on interpretation of test results. Am Heart J. 2013;165:995-9. doi:10.1016/j.ahj.2013.02.029.

53. Substantial equivalence determination decision summary. Review memorandum K093758. https://www.accessdata.fda.gov/cdrh_docs/reviews/K093758.pdf.

54. De Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep. 2010;7:1-8. doi:10.1007/s11897-010-0004-x.

55. Argueso P, Panjwani N. Focus on molecules: Galectin-3. Exp Eye Res. 2011;92:2-3. doi:10.1016/j.exer.2010.11.009.

56. Leffler H, Carlsson S, Hedlund M, et al. Introduction to galectins. Glycoconj J. 2004;19:433-40. doi:101023/B:GLYC.0000014072.34840.04.

57. De Boer RA, Voors AA, Muntendam P, et al. Galectin-3: A novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811-7. doi:101093/eurjhf/hfp097.

58. Dong R, Zhang M, Hu Q, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 2018;41:599-614. doi: 10.3892/ijmm.2017.3311.

59. Chen A, Hou W, Zhang Y, et al. Prognostic value of serum galectin-3 in patients with heart failure: A meta-analysis. Int J Cardiol. 2015;182:168-70. doi:101016/j.ijcard.2014.12.137.

60. Srivatsan V, George M, Shanmugam E. Utility of galectin-3 as a prognostic biomarker in heart failure: Where do we stand? Eur J Prev Cardiol. 2015;22:1096-110. doi:10.1177/2047487314552797.

61. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249-56. doi:101016/j.jacc.2012.04.053.

62. Yu X, Sun Y, Zhao Y, et al. Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure. Int Heart J. 2015;56:314-8. doi:10.1536/ihj.14-304.

63. De Boer RA, Lok DJA, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60-8. doi:10.3109/07853890.2010.538080.

64. Gaze DC. Ischemia modified albumin: a novel biomarker for the detection of cardiac ischemia. Drug Metab Pharmacokinet. 2009;24(4):333-41. doi:10.2133/dmpk.24.333.

65. Montagnana M, Lippi G, Salvagno GL, et al. Reference ranges and diagnostic thresholds of laboratory markers of cardiac damage and dysfunction in a population of apparently healthy black Africans. Clin Chem Lab Med. 2008;46(5):714-6. doi:10.1515/cclm.2008.130.

66. Kalay N, Cetinkaya Y, Basar E, et al. Use of ischemia-modified albumin in diagnosis of coronary artery disease. Coron Artery Dis. 2007;18(8):633-7. doi:10.1097/MCA.0b013e3282f0907b.

67. Wudkowska A, Goch J, Goch A. Ischemia-modified albumin in differential diagnosis of acute coronary syndrome without ST elevation and unstable angina pectoris. Kardiol Pol. 2010;68(4):431-7

68. Aydin S, Ugur K, Aydin S, et al. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag. 2019;15:1-10. doi:10.2147/VHRM.S166157.

69. Лямина Н. П., Карпова Э. С. Претендентные маркеры эффективности и безопасности физической кардиореабилитации больных ишемической болезнью сердца. Международный журнал прикладных и фундаментальных исследований. 2016;5-1:54-60.

70. Yang G, Zhou Y, He H, et al. Ischemia-Modified Albumin, a Novel Predictive Marker of In-Hospital Mortality in Acute Aortic Dissection Patients. Front Physiol.2019;10:1253. doi:10.3389/fphys.2019.01253.

71. Fan JM, Ning X, Li S, et al. Clinical value of combined detection of CK-MB, MYO, cTnI and plasma NT-proBNP in diagnosis of acute myocardial infarction. Clin Lab. 2017;63(3):427-3. doi:10.7754/Clin.Lab.2016.160533.


Для цитирования:


Гуманова Н.Г., Климушина М.В., Богданова Н.Л., Стефанюк О.В., Метельская В.А. Валидные кардиоспецифические биохимические маркеры. Часть II. Кардиоваскулярная терапия и профилактика. 2020;19(5):2588. https://doi.org/10.15829/1728-8800-2020-2588

For citation:


Gumanova N.G., Klimushina M.V., Bogdanova N.L., Stefanyuk O.V., Metelskaya V.A. Valid cardiac biochemical markers. Part II. Cardiovascular Therapy and Prevention. 2020;19(5):2588. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2588

Просмотров: 45


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)