Preview

Cardiovascular Therapy and Prevention

Advanced search

Epigenetics of obesity

https://doi.org/10.15829/1728-8800-2020-2632

Abstract

The pathophysiology of obesity is complex and includes changes in eating behavior, genetic, epigenetic, environmental factors, and much more. To date, ~40 genetic polymorphisms are associated with obesity and fat distribution. However, since these options do not fully explain the inheritance of obesity, other options, such as epigenetic changes, need to be considered. Epigenetic modifications affect gene expression without changing the deoxyribonucleic acid sequence. In addition, environmental exposure during critical periods of development can affect the epigenetic tags and lead to obesity. A deeper understanding of the epigenetic mechanisms underlying obesity can aid in prevention based on lifestyle changes. This review focuses on the role of epigenetic modifications in the development of obesity and related conditions.

About the Authors

O. M. Drapkina
National Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


O. T. Kim
National Research Center for Therapy and Preventive Medicine
Russian Federation
Moscow


References

1. Kelly T., Yang W., Chen C.S., Reynolds K., He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008;32(September (9)):1431–1437.

2. Flegal K.M., Graubard B.I., Williamson D.F., Gail M.H. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298(November (17)):2028–2037.

3. Pischon T., Boeing H., Hoffmann K. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(November (20)):2105–2120.

4. Afshin A, Forouzanfar MH, Reitsma MB; for the GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13-27. doi:10.1056/NEJMoa1614362.

5. González-Muniesa P, Martínez JA. Precision Nutrition and Metabolic Syndrome Management. Nutrients. 2019 Oct;11(10) DOI: 10.3390/nu11102411.

6. Katzmarzyk, P. T., Pérusse, L., Rao, D. C., & Bouchard, C. (2000). Familial Risk of Overweight and Obesity in the Canadian Population using the WHO/NIH Criteria. Obesity Research, 8(2), 194–197. doi:10.1038/oby.2000.21

7. Koeppen-Schomerus, G., Wardle, J. & Plomin, R. A genetic analysis of weight and overweight in 4-year-old twin pairs. Int J Obes 25, 838–844 (2001). https://doi.org/10.1038/sj.ijo.0801589

8. Allison DB, Kaprio J, Korkeila M, et al. The heritability of body mass index among an international sample of monozygotic twins reared apart. International Journal of Obesity and Related Metabolic Disorders : Journal of the International Association for the Study of Obesity. 1996 Jun;20(6):501-506.

9. Fesinmeyer, M. D., North, K. E., Ritchie, M. D., Lim, U., Franceschini, N., Wilkens, L. R., … Peters, U. (2013). Genetic risk factors for BMI and obesity in an ethnically diverse population: Results from the population architecture using genomics and epidemiology (PAGE) study. Obesity, 21(4), 835–846. doi:10.1002/oby.20268

10. Locke, A., Kahali, B., Berndt, S. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015). https://doi.org/10.1038/nature14177

11. Shungin, D., Winkler, T., Croteau-Chonka, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015). https://doi.org/10.1038/nature14132

12. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–3649. doi:10.1093/hmg/ddy271

13. Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab. 2016;6(1):86–100. Published 2016 Nov 16. doi:10.1016/j.molmet.2016.11.003

14. Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–86. doi:10.1038/nature20784

15. Rohde, K., Keller, M., la Cour Poulsen, L., Blüher, M., Kovacs, P., & Böttcher, Y. (2018). Genetics and epigenetics in obesity. Metabolism. doi:10.1016/j.metabol.2018.10.007

16. Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas. 2011;69(1):41–49. doi:10.1016/j.maturitas.2011.02.018

17. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi:10.1038/npp.2012.112

18. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi:10.1038/cr.2011.22

19. Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO [published correction appears in Nat Chem Biol. 2012 Dec;8(12):1008]. Nat Chem Biol. 2011;7(12):885–887. Published 2011 Oct 16. doi:10.1038/nchembio.687

20. Manjrekar, J. (2017). Epigenetic inheritance, prions and evolution. Journal of Genetics, 96(3), 445–456. doi:10.1007/s12041-017-0798-3

21. Serizay, J , Dong Y, Janes J,Chesney M, Cerrato C, Ahringer, J. (2020). Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes. 10.1101/2020.02.20.958579.

22. Teif VB, Beshnova DA, Vainshtein Y, et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014;24(8):1285–1295. doi:10.1101/gr.164418.113

23. Kaur, Y., de Souza, R. J., Gibson, W. T., & Meyre, D. (2017). A systematic review of genetic syndromes with obesity. Obesity Reviews, 18(6), 603–634. doi:10.1111/obr.12531

24. Marie Pigeyre, Fereshteh T. Yazdi, Yuvreet Kaur, David Meyre; Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 1 June 2016; 130 (12): 943–986. doi: https://doi.org/10.1042/CS20160136

25. Pigeyre, M., Yazdi, F. T., Kaur, Y., & Meyre, D. (2016). Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical Science, 130(12), 943–986. doi:10.1042/cs20160136

26. Saeed, S., Arslan, M., & Froguel, P. (2018). Genetics of Obesity in Consanguineous Populations: Toward Precision Medicine and the Discovery of Novel Obesity Genes. Obesity, 26(3), 474–484. doi:10.1002/oby.22064

27. Choquet, H., & Meyre, D. (2011). Molecular Basis of Obesity: Current Status and Future Prospects. Current Genomics, 12(3), 154–168. doi:10.2174/138920211795677921

28. Ho EV, Klenotich SJ, McMurray MS, Dulawa SC (2016) Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit. PLoS ONE 11(11): e0166756. https://doi.org/10.1371/journal.pone.0166756

29. Boender, A. J., Van Rozen, A. J., & Adan, R. A. H. (2012). Nutritional State Affects the Expression of the Obesity-Associated GenesEtv5, Faim2, Fto, andNegr1. Obesity, 20(12), 2420–2425. doi:10.1038/oby.2012.128

30. Kilpeläinen, T., Zillikens, M., Stančákova, A. et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43, 753–760 (2011). https://doi.org/10.1038/ng.866

31. Shungin, D., Winkler, T., Croteau-Chonka, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015). https://doi.org/10.1038/nature14132

32. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., … Lindgren, C. M. (2007). A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 316(5826), 889–894. doi:10.1126/science.1141634

33. Claussnitzer, M., Dankel, S. N., Kim, K.-H., Quon, G., Meuleman, W., Haugen, C., … Kellis, M. (2015). FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. New England Journal of Medicine, 373(10), 895–907. doi:10.1056/nejmoa1502214

34. Andreasen, C. H., Stender-Petersen, K. L., Mogensen, M. S., Torekov, S. S., Wegner, L., Andersen, G., … Hansen, T. (2007). Low Physical Activity Accentuates the Effect of the FTO rs9939609 Polymorphism on Body Fat Accumulation. Diabetes, 57(1), 95–101. doi:10.2337/db07-0910

35. Li S, Zhao JH, Luan J, Ekelund U, Luben RN, Khaw K-T, et al. (2010) Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study. PLoS Med 7(8): e1000332. https://doi.org/10.1371/journal.pmed.1000332

36. Qi Q, Chu AY, Kang JH, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367(15):1387–1396. doi:10.1056/NEJMoa1203039

37. Zhang, X., Qi, Q., Zhang, C., Smith, S. R., Hu, F. B., Sacks, F. M., … Qi, L. (2012). FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial. Diabetes, 61(11), 3005–3011. doi:10.2337/db11-1799

38. De Luis, D. A., Aller, R., Izaola, O., de la Fuente, B., Conde, R., Sagrado, M. G., & Primo, D. (2012). Evaluation of weight loss and adipocytokines levels after two hypocaloric diets with different macronutrient distribution in obese subjects with rs9939609 gene variant. Diabetes/Metabolism Research and Reviews, 28(8), 663–668. doi:10.1002/dmrr.2323

39. Huang T, Hu FB. Gene-environment interactions and obesity: recent developments and future directions. BMC Med Genomics. 2015;8 Suppl 1(Suppl 1):S2. doi:10.1186/1755-8794-8-S1-S2

40. Aschard, H., Chen, J., Cornelis, M. C., Chibnik, L. B., Karlson, E. W., & Kraft, P. (2012). Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases. The American Journal of Human Genetics, 90(6), 962–972. doi:10.1016/j.ajhg.2012.04.017

41. Kaprio, J. (2012). Twins and the mystery of missing heritability: the contribution of gene-environment interactions. Journal of Internal Medicine, 272(5), 440–448. doi:10.1111/j.1365-2796.2012.02587.x

42. Dick, K. J., Nelson, C. P., Tsaprouni, L., Sandling, J. K., Aïssi, D., Wahl, S., … Samani, N. J. (2014). DNA methylation and body-mass index: a genome-wide analysis. The Lancet, 383(9933), 1990–1998. doi:10.1016/s0140-6736(13)62674-4

43. Richmond RC, Sharp GC, Ward ME, et al. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes. 2016;65(5):1231–1244. doi:10.2337/db15-0996

44. Pfeiffer S, Krüger J, Maierhofer A, et al. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep. 2016;6:27969. Published 2016 Jun 27. doi:10.1038/srep27969

45. Dahlman, I., Sinha, I., Gao, H. et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes 39, 910–919 (2015). https://doi.org/10.1038/ijo.2015.31

46. Voisin S, Almén MS, Zheleznyakova GY, et al. Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med. 2015;7:103. Published 2015 Oct 8. doi:10.1186/s13073-015-0225-4

47. Ronn, T., Volkov, P., Gillberg, L., Kokosar, M., Perfilyev, A., Jacobsen, A. L., … Ling, C. (2015). Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Human Molecular Genetics. doi:10.1093/hmg/ddv124

48. Guénard, F., Tchernof, A., Deshaies, Y., Biron, S., Lescelleur, O., Biertho, L., … Vohl, M.-C. (2017). Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome. Translational Research, 184, 1–11.e2. doi:10.1016/j.trsl.2017.01.002

49. Allum F, Shao X, Guénard F, et al. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants [published correction appears in Nat Commun. 2015;6:8016]. Nat Commun. 2015;6:7211. Published 2015 May 29. doi:10.1038/ncomms8211

50. Guénard, F., Tchernof, A., Deshaies, Y., Pérusse, L., Biron, S., Lescelleur, O., … Vohl, M.-C. (2014). Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiological Genomics, 46(6), 216–222. doi:10.1152/physiolgenomics.00160.2013

51. Rönn, T., Volkov, P., Davegårdh, C., Dayeh, T., Hall, E., Olsson, A. H., … Ling, C. (2013). A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue. PLoS Genetics, 9(6), e1003572. doi:10.1371/journal.pgen.1003572

52. Houde AA, Légaré C, Biron S, et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet. 2015;16:29. Published 2015 May 1. doi:10.1186/s12881-015-0174-1

53. Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond). 2007;4:18. Published 2007 Sep 1. doi:10.1186/1743-7075-4-18

54. Kuehnen, P., Mischke, M., Wiegand, S., Sers, C., Horsthemke, B., Lau, S., … Krude, H. (2012). An Alu Element–Associated Hypermethylation Variant of the POMC Gene Is Associated with Childhood Obesity. PLoS Genetics, 8(3), e1002543. doi:10.1371/journal.pgen.1002543

55. Crujeiras, A. B., Campion, J., Díaz-Lagares, A., Milagro, F. I., Goyenechea, E., Abete, I., … Martínez, J. A. (2013). Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: A translational study. Regulatory Peptides, 186, 1–6. doi:10.1016/j.regpep.2013.06.012

56. Fermín I. Milagro, Purificación Gómez-Abellán, Javier Campión, J. Alfredo Martínez, Jose M. Ordovás & Marta Garaulet (2012) CLOCK, PER2 and BMAL1 DNA Methylation: Association with Obesity and Metabolic Syndrome Characteristics and Monounsaturated Fat Intake, Chronobiology International, 29:9, 1180 1194, DOI: 10.3109/07420528.2012.719967

57. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Prediction of Blood Lipid Phenotypes Using Obesity-Related Genetic Polymorphisms and Lifestyle Data in Subjects with Excessive Body Weight. Int J Genomics. 2018;2018:4283078. Published 2018 Nov 19. doi:10.1155/2018/4283078

58. Ramos-Lopez, O., Samblas, M., Milagro, F. I., Riezu-Boj, J. I., Crujeiras, A. B., Martinez, J. A., & Project, M. (2018). Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiology International, 1–13. doi:10.1080/07420528.2018.1446021

59. Hjort L, Jørgensen SW, Gillberg L, et al. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics. 2017;9:40. Published 2017 Apr 21. doi:10.1186/s13148-017-0340-8

60. Obermann-Borst, S., Eilers, P., Tobi, E. et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res 74, 344–349 (2013). https://doi.org/10.1038/pr.2013.95

61. Drake, A. J., McPherson, R. C., Godfrey, K. M., Cooper, C., Lillycrop, K. A., Hanson, M. A., … Reynolds, R. M. (2012). An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clinical Endocrinology, 77(6), 808–815. doi:10.1111/j.1365-2265.2012.04453.x

62. Braun KVE, Dhana K, de Vries PS, et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics. 2017;9:15. Published 2017 Feb 7. doi:10.1186/s13148-016-0304-4

63. Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17(1):138. Published 2016 Jun 27. doi:10.1186/s13059-016-1000-6

64. Keller, M., Kralisch, S., Rohde, K. et al. Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia 57, 2374–2383 (2014). https://doi.org/10.1007/s00125-014-3356-z

65. Keller, M., Klös, M., Rohde, K., Krüger, J., Kurze, T., Dietrich, A., … Böttcher, Y. (2018). DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism. The FASEB Journal, fj.201800528R. doi:10.1096/fj.201800528r

66. Rohde, K., Keller, M., Klös, M. et al. Adipose tissue depot specific promoter methylation of TMEM18 . J Mol Med 92, 881–888 (2014). https://doi.org/10.1007/s00109-014-1154-1

67. Rohde, K., Klös, M., Hopp, L. et al. IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits. Sci Rep 7, 12369 (2017). https://doi.org/10.1038/s41598-017-12393-5

68. Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., … Zierath, J. R. (2012). Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism, 15(3), 405–411. doi:10.1016/j.cmet.2012.01.001

69. Lund, J., Rustan, A. C., Løvsletten, N. G., Mudry, J. M., Langleite, T. M., Feng, Y. Z., … Thoresen, G. H. (2017). Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLOS ONE, 12(4), e0175441. doi:10.1371/journal.pone.0175441

70. Bajpeyi, S., Covington, J. D., Taylor, E. M., Stewart, L. K., Galgani, J. E., & Henagan, T. M. (2017). Skeletal Muscle PGC1α −1 Nucleosome Position and −260 nt DNA Methylation Determine Exercise Response and Prevent Ectopic Lipid Accumulation in Men. Endocrinology, 158(7), 2190–2199. doi:10.1210/en.2017-00051

71. Ingerslev, L.R., Donkin, I., Fabre, O. et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenet 10, 12 (2018). https://doi.org/10.1186/s13148-018-0446-7

72. Barres, R., Kirchner, H., Rasmussen, M., Yan, J., Kantor, F. R., Krook, A., … Zierath, J. R. (2013). Weight Loss after Gastric Bypass Surgery in Human Obesity Remodels Promoter Methylation. Cell Reports, 3(4), 1020–1027. doi:10.1016/j.celrep.2013.03.018

73. Benton, M. (2015). The Aesthetics of Biography—And What It Teaches. The Journal of Aesthetic Education, 49(1), 1-19. doi:10.5406/jaesteduc.49.1.0001

74. Donkin, I., Versteyhe, S., Ingerslev, L. R., Qian, K., Mechta, M., Nordkap, L., … Barrès, R. (2016). Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metabolism, 23(2), 369–378. doi:10.1016/j.cmet.2015.11.004

75. Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnology, 29(6), 613–624. doi:10.1016/j.nbt.2012.03.004

76. Loos, R. J. F. (2012). Genetic determinants of common obesity and their value in prediction. Best Practice & Research Clinical Endocrinology & Metabolism, 26(2), 211–226. doi:10.1016/j.beem.2011.11.003

77. Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793–795. doi:10.1056/nejmp1500523


Supplementary files

Review

For citations:


Drapkina O.M., Kim O.T. Epigenetics of obesity. Cardiovascular Therapy and Prevention. 2020;19(6):2632. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2632

Views: 1371


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)