Preview

Cardiovascular Therapy and Prevention

Advanced search

Cell biobank as a necessary infrastructure for the development and implementation of mesenchymal stem cell-based therapy in the treatment of anthracycline-induced cardiotoxicity. Literature review and own data

https://doi.org/10.15829/1728-8800-2020-2733

Abstract

Cardiovascular diseases, along with cancer, are the leading causes of death worldwide. Although modern pharmacological treatment of various cardiomyopathies can slow the development of myocardial dysfunction, they have limited effectiveness in patients with end-stage disease. Many researchers believe that heart transplantation is the only radical treatment in this case. However, the lack of donors and the high 

operation cost require careful selection of surgical candidates. With the introduction of molecular and cell biology into medical practice, today, stem cell therapy can become an alternative method of nonsurgical restoration of myocardial functions. The most studied and attractive is the use of mesenchymal stem cells (MSCs). MSCs differ from hematopoietic stem cells used as support for hematopoiesis in high-dose chemotherapy by the following features: pronounced trophic effect, immune tolerance, the ability to suppress alloreactivity and autoimmune disorders. An important stage in the implementation of cell therapy is the creation of a cell biobank of MSCs. In A.F.Tsyb Medical Radiological Research Center, this work has been carried out since1984. Asignificant number of experimental studies have been carried out, confirming the possibility of clinical implementation of this approach. A method for obtaining stable cultures of MSCs and cardiomyoblasts from bone marrow cells was developed and approvals were obtained. Experimental studies of cell therapy are also being conducted to overcome anthracycline-induced cardiotoxicity in cancer patients.

This article is devoted to practical application of MSC-based therapy, in particular, in cancer patients with cardiotoxicity, as well as to the issues of creating a cell biobank for treatment with MSCs.

About the Authors

L. Yu. Grivtsova
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


O. E. Popovkina
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


N. N. Dukhova
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


O. A. Politiko
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


V. V. Yuzhakov
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


L. A. Lepekhina
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Obninsk


S. Sh. Kalsina
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


S. A. Ivanov
A. F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


A. D. Kaprin
A.F. Tsyb Medical Radiological Research Center, branch of the National Medical Radiological Research Center
Russian Federation
Obninsk


References

1. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem cell Int. 2015:628767. doi:10.1155/2015/628767.

2. Pustovalova MV, Grekhova AK, Osipov AN. Mesenchymal stem cells: effects of exposure to ionizing radiation in low doses. Radiation biology. Radioecology. 2018;58(4):352-62. (In Russ.) doi:10.1134/ S086980311804015X.

3. Caplan AI. Adult mesenсhymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341-7. doi:10.1002/jcp.21200.

4. Caplan AI, Correa D, MD, Ph D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11-5. doi:10.1016/j.stem.2011.06.008.

5. Liang J, Zhang H, Wang D, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut. 2012;61:468-69. doi:10.1136/gutjnl-2011-300083.

6. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid resistant, severe, acute graft versus host disease: a phase II study. Lancet. 2008;371:1579-86. doi:10.1016/ S0140-6736(08)60690-X.

7. Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis. 2010;69:1423-29. doi:10.1136/ard.2009.123463.

8. Kurtzberg J, Prockop S, Teira P, et al. Allogeneic Human Mesenchymal Stem Cell Therapy (Remestemcel-L, Prochymal) as a Rescue Agent for Severe Refractory Acute Graft-versusHost Disease in Pediatric Patients. Biol Blood Marrow Transplant. 2014;20(2):229-35. doi:10.1016/j.bbmt.2013.11.001.

9. Karussis D, Karageorgiou C, Vaknin Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell trans plantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187-94. doi:10.1001/archneurol.2010.248.

10. Konoplyannikov AG. Stem cell radiobiology. M.: Energoatomizdat, 1984. р. 119. (In Russ.)

11. Tsyb AF, Konoplyannikov AG, Kolesnikova AI, et al. Obtaining and using cell cultures from human bone marrow mesenchymal stem cells. Bulletin of the RAMS. 2004:71-6. (In Russ.) .

12. Zherbin EA, Kolesnikova AI, Konoplyanikov AG, et al. Radiosensitivity of human bone marrow stromal progenitor cells during their in vitro irradiation in cell suspension and the modifying effect of hypoxia. Radiobiology. 1979;19(2):209-13. (In Russ.)

13. Kursova LV, Konoplyanikov AG, Kalsina SSh, et al. Cardiomyoblasts derived from mesenchymal stem cells in the complex treatment of radiation damage to the heart. Radiation Biology, Radioecology. 2017;57(1):5-11. (In Russ.) doi:10.7868/S0869803117010088.

14. Knyazev OV, Konoplyannikov AG, Kagramanova AV, et al. Сombination therapy of mesenchymal stromal cells and infliximab in uncomplicated (luminal) crohn disease. Koloproktologia. 2016;(3):24-30. (In Russ.) doi:10.33878/2073-75562016-0-3-24-30.

15. Knyazev OV, Fadeeva NA, Belyakov NI, et al. Cell therapy of perianal manifestations of Crohn’s disease. Coloproctology. 2017;53(61):80-1. (In Russ.) К doi:10.26442/terarkh201890360-66.

16. Knyazev OV, Belyakov NI, Dobrolyubova EA, et al. Therapy with mesenchymal stromal cells of perianal lesions in Crohn’s disease. Genes and Cells. 2017;12(3):121. (In Russ.)

17. Knyazev OV, Parfenov AI, Konoplyanikov AG, et al. The use of mesenchymal stem cells in the complex therapy of ulcerative cololitis. Therapeutic archive. 2016;8(2):44-8. (In Russ.) doi:10.17116/terarkh201688244-48.

18. Pavlov VV, Pavlova LN, Chibisova OF, et al. Influence of different modes of co-transplantation of mesenchymal and hematopoietic stem cells on the rate of hematopoiesis restoration in mice after exposure to cyclophosphamide in sublethal doses. Cell technologies in biology and medicine.2018;4:239-43. (In Russ.) https://www.rucont.ru/efd/675285.

19. Agrba VZ, Karalogly DD, Gvozdik TE, et al. Use of mesenchymal stem cells for possible repair of organs and tissues damaged by doxorubicin in an experiment on monkeys. Bulletin of Experimental Biology and Medicine. 2018;165(1):118-21. (In Russ.)

20. Dergilev KV, Vasilets YuD, Tsokolaeva ZI, et al. Prospects for cell therapy of myocardial infarction and heart failure based on cardiosphere cells. Therapeutic archive. 2020;92(4):111-20. (In Russ.) doi:10.26442/00403660.2020.04.000634.

21. Wang H, Sheehan RP, Palmer AC, et al. Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Systems.2019;8(5):412-26. doi:10.1016/j.cels.2019.03.009.

22. William PB, Keisha MM, Baolin Z. Cellular Modeling of Cancer Therapy Induced Cardiotoxicity. Canc Ther Oncol Int J. 2018;9(1):555751. doi:10.19080/CTOIJ.2018.09.555751.

23. Gintant G, Burridge P, Gepstein L, et al. Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement from the American Heart Association. Circ Res. 2019;125:75-92. doi:10.1161/RES.0000000000000291.

24. Sharp TE, George GS. Stem cell therapy and breast cancer treatment: review of stem cell research and potential therapeutic impact against cardiotoxicities due to breast cancer treatment Front Oncol. 2014;3(4):299. doi:10.3389/fonc.2014.00299.

25. Lin H, Ling Y, Pan J, Gong H. Therapeutic effects of erythropoietin expressed in mesenchymal stem cells for dilated cardiomyopathy in rat. Biochem Biophys Res Commun. 2019;514(4):575-80. doi:10.1016/j.bbrc.2019.07.053.

26. Astma DE, Fibbe WE, Rabelink TJ. Opportunities and challenges for mesenchymal stem cell — mediated heart repair. Curr Opin Lipidol. 2007;18(6):645-9. doi:10.1097/ MOL.0b013e3282f0dd1f.

27. Nazari-Shafti TZ, Neuber S, Duran AG, et al. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med. 2020;9(12):1558-69. doi:10.1002/sctm.19-0432.

28. Suzuki K, Martuza B, Suzuki N, et al. Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicininduced heart failure. Circulation. 2001;104(12):I213-7. doi:10.1161/hc37t1.094929.

29. Jensen RA, Acton EM, Peters JH. Doxorubicin cardiotoxicity in the rat: comparison of electrocardiogram, transmembrane potential, and structural effects. J Cardiovasc Pharmacol.1984;6(1):186-200.

30. Keefe DL. Anthracycline-induced cardiomyopathy. Semin. Oncol. 2001;28(4):2-7.

31. Shudo Y, Miyagawa S, Ohkura H, et al. Addition of mesenchymal stem cells enhances the therapeutic effects of skeletal myoblast cell-sheet transplantation in a rat ischemic cardiomyopathy model. Tissue Eng Part A. 2014;20(3-4):728-39. doi:10.1089/ten.TEA.2012.0534.

32. Zuppinger C, Eppenberger-Eberhardt M, Eppenberger HM. N-Cadherin: structure, function and importance in the formation of new intercalated disc-like cell contacts in cardiomyocytes. Heart Fail Rev. 2000;5:251-7. doi:10.1023/A:1009809520194.

33. Yoshida Sh, Miyagawa Sh, Fukushima S, et al. Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Mol Ther. 2018;26(11):2681-95. doi:10.1016/j.ymthe.2018.08.012.


Supplementary files

Review

For citations:


Grivtsova L.Yu., Popovkina O.E., Dukhova N.N., Politiko O.A., Yuzhakov V.V., Lepekhina L.A., Kalsina S.Sh., Ivanov S.A., Kaprin A.D. Cell biobank as a necessary infrastructure for the development and implementation of mesenchymal stem cell-based therapy in the treatment of anthracycline-induced cardiotoxicity. Literature review and own data. Cardiovascular Therapy and Prevention. 2020;19(6):2733. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2733

Views: 726


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)