Preview

Cardiovascular Therapy and Prevention

Advanced search

Relationship of obesity, low-density lipoprotein cholesterol and myocardial perfusion in patients with risk factors and without atherosclerotic cardiovascular diseases

https://doi.org/10.15829/1728-8800-2021-2734

Abstract

Aim. In the retrospective study, to identify the relationship between body mass index (BMI), low-density lipoprotein cholesterol (LDL-C) levels and myocardial perfusion in patients without established atherosclerotic cardiovascular diseases.

Material and methods. The study included 534 patients with cardiovascular risk factors but without established coronary artery disease, diabetes, myocardial infarction or coronary revascularization. In 76 of them, stress/rest myocardial perfusion single-photon emission computed tomography (SPECT) was performed.

Results. The relationship between BMI and LDL-C levels is described by a quadratic (r2=0,21, p<0,001) function or a linear spline kinked in BMI of 27 kg/m2 (r=0,51, -0,46 — before and after this value, respectively; p<0,001). According to SPECT, focal stable and transient left ventricular myocardial perfusion abnormalities were not detected. However, there was a direct linear correlation between the heterogeneity of rest myocardial perfusion (ohet) and BMI (r=0,43, p<0,001), ohet and waist circumference (r=0,40, p<0,001), as well as between ohet and LDL-C (r=0,44, p<0,001).

Conclusion. The relationship between BMI and LDL-C levels can be explained by endocrine dysfunction of adipose tissue, which disturbs the synthesis and metabolism of atherogenic lipoproteins. Obesity and increased LDL-C levels affect myocardial perfusion both by aggravating coronary atherogenesis and by microcirculatory disorders. Rest myocardial perfusion SPECT can be a method of screening for myocardial disorders caused by both diffuse atherosclerosis and metabolic syndrome.

About the Authors

V. B. Sergienko
National Medical Research Center of Cardiology
Russian Federation


A. A. Ansheles
National Medical Research Center of Cardiology
Russian Federation


I. V. Sergienko
National Medical Research Center of Cardiology
Russian Federation


S. A. Boytsov
National Medical Research Center of Cardiology
Russian Federation


References

1. Kotseva K. The EUROASPIRE surveys: lessons learned in cardiovascular disease prevention. Cardiovasc Diagn Ther. 2017;7(6):633-9. doi:10.21037/cdt.2017.04.06.

2. Lovren F, Teoh H, Verma S. Obesity and atherosclerosis: mechanistic insights. Can J Cardiol. 2015;31 (2): 177-83. doi:10.1016/j.cjca.2014.11.031.

3. Al-Hamodi Z, Al-Habori M, Al-Meeri A, et al. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):99. doi:10.1186/1758-5996-6-99.

4. Kwaifa IK, Bahari H, Yong YK, et al. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules. 2020;10(2). doi:10.3390/biom10020291.

5. Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. J Nucl Cardiol. 2018;25(5):1784-846. doi:10.1007/s12350-018-1283-y.

6. Flotats A, Knuuti J, Gutberlet M, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2011;38(1):201-12. doi:10.1007/s00259-010-1586-y.

7. 7 Hachamovitch R, Di Carli MF. Methods and limitations of assessing new noninvasive tests: Part II: Outcomes-based validation and reliability assessment of noninvasive testing. Circulation. 2008; 117(21 ):2793-801. doi: 10.1161/CIRCULATIONAHA.107.714006.

8. Hachamovitch R, Hayes SW, Friedman JD, et al. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol. 2005;45(5):722-9. doi:10.1016/j.jacc.2004.08.069.

9. Ansheles AA, Sergienko IV, Denisenko-Kankiya EI, et al. Results of perfusion single-photon emission tomography of the myocardium and coronary angiography data in patients with different pretest probabilities of coronary heart disease. Therapeutic archive. 2020;92(4):30-6. (In Russ.) doi:10.26442/00403660.2020.04.000549.

10. Hachamovitch R, Hayes SW, Friedman JD, et al. Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol. 2004;43(2):200-8. doi:10.1016/j.jacc.2003.07043.

11. Ansheles AA, Martirosyan LA, Sergienko IV, Sergienko VB. New approaches to quantifying early disorders and perfusion inhomogeneity of the myocardium according to the data of single-photon emission computed tomography. Journal of radiology and nuclear medicine. 2015;5:17-26. (In Russ.)

12. Sergienko IV, Ansheles AA. Identification of patients with familial hypercholesterolemia in the Russian population on the example of Moscow and the Moscow region. Rational Pharmacotherapy in Cardiology. 2018;14(1):77-87 (In Russ.) doi: 10.20996/1819-6446-2018-14-1-77-87.

13. Sergienko IV, Ansheles AA, Drapkina OM, et al. ANICHKOV study: the effect of combined antihypertensive and lipidlowering therapy on cardiovascular complications in high and very high risk patients. Therapeutic archive. 2019;91(4):90-8. (In Russ.) doi:10.26442/00403660.2019.04.000104.

14. Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083-96. doi:10.1016/S0140-6736(09)60318-4.

15. Grundy SM. Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clin Cornerstone. 2006;8(Suppl)1:S21-7 doi:10.1016/s1098-3597(06)80005-0.

16. Luo Y, Ma X, Shen Y, et al. Positive relationship between serum low-density lipoprotein cholesterol levels and visceral fat in a Chinese nondiabetic population. PLoS One. 2014;9(11):e112715. doi:10.1371/journal.pone.0112715.

17. 17 DeStefano F, Berg RL, Griese GG, Jr. Determinants of serum lipid and lipoprotein concentrations in children. Epidemiology. 1995;6(4):446-9. doi: 10.1097/00001648-199507000-00024.

18. Livingston EH, Chandalia M, Abate N. Do current body mass index criteria for obesity surgery reflect cardiovascular risk? Surg Obes Relat Dis. 2007;3(6):577-85. doi:10.1016/j.soard.200707013.

19. Laclaustra M, Lopez-Garcia E, Civeira F, et al. LDL Cholesterol Rises With BMI Only in Lean Individuals: Cross-sectional U.S. and Spanish Representative Data. Diabetes Care. 2018;41(10):2195-201. doi:10.2337/dc18-0372.

20. Boren J, Watts GF, Adiels M, et al. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study. Arterioscler Thromb Vasc Biol. 2015;35(10):2218-24. doi:10.1161/ATVBAHA.115.305614.

21. Verges B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis. 2010;211(2):353-60. doi:10.1016/j.atherosclerosis.2010.01.028.

22. Ordovas JM, Corella D. Metabolic syndrome pathophysiology: the role of adipose tissue. Kidney Int Suppl. 2008(111):S10-4. doi:10.1038/ki.2008.517.

23. Lotta LA, Sharp SJ, Burgess S, et al. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis. JAMA. 2016;316(13):1383-91. doi:10.1001/jama.2016.14568.

24. Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351-61. doi: 10.1016/S0140-6736(14)61183-1.

25. Le Lay S, Ferre P, Dugail I. Adipocyte cholesterol balance in obesity. Biochem Soc Trans. 2004;32(Pt 1):103-6. doi:10.1042/bst0320103

26. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabe-tologia. 2002;45(9):1201-10. doi:10.1007/s00125-002-0873-y.

27. 27 Kuryszko J, Slawuta P, Sapikowski G. Secretory function of adipose tissue. Pol J Vet Sci. 2016; 19(2):441-6. doi:10.1515/pjvs-2016-0056.

28. Ference BA, Majeed F, Penumetcha R, et al. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J Am Coll Cardiol. 2015;65(15):1552-61. doi:10.1016/j.jacc.2015.02.020.

29. Danesh J, Erqou S, Walker M, et al. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007;22(12):839-69. doi:10.1007/s10654-007-9165-7

30. Lu Y, Hajifathalian K, Ezzati M, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970-83. doi:10.1016/S0140-6736(13)61836-X.

31. Heinberg LJ, Keating K, Simonelli L. Discrepancy between ideal and realistic goal weights in three bariatric procedures: who is likely to be unrealistic? Obes Surg. 2010;20(2):148-53. doi:10.1007/s11695-009-9982-8.

32. Martirosyan LA, Sergienko IV, Ansheles AA, et al. Features of left ventricular myocardial perfusion in patients with hypercholesterolemia. Atherosclerosis and dyslipidemia. 2015;3:61-70. (In Russ.)

33. Yamasaki Y, Nakajima K, Kusuoka H, et al. Prognostic value of gated myocardial perfusion imaging for asymptomatic patients with type 2 diabetes: the J-ACCESS 2 investigation. Diabetes Care. 2010;33(11):2320-6. doi:10.2337/dc09-2370.

34. Bax JJ, Bonow RO, Tschope D, et al. The potential of myocardial perfusion scintigraphy for risk stratification of asymptomatic patients with type 2 diabetes. J Am Coll Cardiol. 2006;48(4):754-60. doi:10.1016/j.jacc.2006.04.077.

35. Drapkina OM, Dubolazova YuV, Boytsov SA. Fight against obesity: “Gold standard” and new horizons. Rational Pharmacotherapy in Cardiology 2016;12(4):450-8. (In Russ.) doi: 10.20996/1819-6446-2016-12-4-450-458.

36. Balanova YuA, Shalnova SA, Deev AD, et al. Obesity in the Russian population — prevalence and association with risk factors for chronic non-communicable diseases. Russian Journal of Cardiology. 2018;23(6):123-30. (In Russ.) doi:10.15829/1560-4071-2018-6-123-130.


Supplementary files

Review

For citations:


Sergienko V.B., Ansheles A.A., Sergienko I.V., Boytsov S.A. Relationship of obesity, low-density lipoprotein cholesterol and myocardial perfusion in patients with risk factors and without atherosclerotic cardiovascular diseases. Cardiovascular Therapy and Prevention. 2021;20(2):2734. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2734

Views: 5060


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)