Circulating miR-21-5p, miR-146a-5p, miR-320a-3p in patients with atrial fibrillation in combination with hypertension and coronary artery disease
https://doi.org/10.15829/1728-8800-2022-2814
Abstract
Aim. To study the plasma profiles of circulating extracellular microribonucleic acids (miRNAs), potentially including in pathogenesis of cardiovascular diseases, in patients with atrial fibrillation (AF) in combination with hypertension (HTN) or coronary artery disease (CAD).
Material and methods. The study included patients with AF in combi nation with HTN (n=21) or CAD (n=10), as well as following control groups: patients with uncomplicated HTN without AF (n=28), patients with stable CAD without AF (n=10) and healthy individuals (n=30). MiRNA samples were isolated from blood plasma of the study participants. MiRNAs were detected by TaqMan quantitative polymerase chain reaction assay. The relative plasma levels of five candidate miRNAs were estimated relative to the reference miR-16-5p.
Results. Among the analyzed circulating plasma miRNAs, a higher level of miR-320a-3p was associated with AF, while increased levels of miR 146a-5p and miR-21-5p are potentially associated with presence of both AF and CAD.
Conclusion. Differences were found in the plasma miRNA profiles (miR-21-5p, miR-320a-3p, miR-146a-5p) between patients with AF, regardless of concomitant disease (CAD or HTN), and healthy individuals in the control group.
Keywords
About the Authors
S. V. VasilievI.M. Sechenov First Moscow State Medical University
Russian Federation
Moscow
A. S. Akselrod
I.M. Sechenov First Moscow State Medical University
Russian Federation
Moscow
A. V. Zhelankin
Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
Russian Federation
Moscow
D. Yu. Schekochikhin
I.M. Sechenov First Moscow State Medical University
Russian Federation
Moscow
E. V. Generozov
Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
Russian Federation
Moscow
E. I. Sharova
Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
Russian Federation
Moscow
D. A. Stonogina
I.M. Sechenov First Moscow State Medical University
Russian Federation
Moscow
References
1. Filatov AG, Tarashvili EG. Epidemiology and social significance of atrial fibrillation. Annaly Arrhythmologii. 2012;9:2:5-13. (In Russ.)
2. Rubanenko OA, Fatenkov OV, Hohlunov SM. Role of inflammatory factors in atrial fibrillation. Cardiologiya: Novosti. Mneniya. Obuchenie. 2015;2(5):43-7 (In Russ.)
3. Marcelle DS, Alexander HM, et al. Role of inflammation in early atrial fibrillation recurrence. EP Europace. 2012;14:810-17 doi:10.1093/europace/eur402.
4. Gareev IF, Beylerli OA. Circulating microRNAs as biomarkers: what are perspectives? Profilacticheskaya medicina. 2018;21(6):142-50. (In Russ.) doi: 10.17116/profmed201821061142.
5. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118(4):703-20. doi:10.1161/CIRCRESAHA.115.306300.
6. Li Y, Tan W, Ye F, et al. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J Intern Med Res. 2019;47(8):3580-9. doi:10.1177/0300060519852235.
7. Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467 doi:10.1038/nrclinonc.2011.76.
8. Bronze-da-Rocha E. MicroRNAs Expression Profiles in Cardiovascular Diseases. Biomed Res Int. 2014;2014:985408. doi:10.1155/2014/985408.
9. Romaine SP, Tomaszewski M, Condorelli G, et al. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101(12):921-8. doi:10.1136/heartjnl-2013-305402.
10. Navickas R, Gal D, Laucevicius A, et al. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res. 2016; 1 11(4):322-37 doi:10.1093/cvr/cvw174.
11. Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets, and challenges. Acta Pharmacol Sin. 2018;39(7):1073-84. doi:10.1038/aps.2018.30.
12. Wei Z, Bing Z, Shaohuan Q, et al. Expression of miRNAs in plasma exosomes derived from patients with atrial fibrillation. Clin Cardiol. 2020; 43(12):1450-9. doi: 10.1002/clc.23461.
13. Silva AM, Araujo JN, Freitas RC, et al. Circulating MicroRNAs as potential biomarkers of atrial fibrillation. BioMed Res Int. 2017; 2017 doi:10.1155/2017/7804763.
14. Felekkis K, Papaneophytou C. Challenges in using circulating micro-RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. doi:10.3390/ijms21020561.
15. Appierto V, Callari M, Cavadini E, et al. A lipemia-independent NanoDrop®-based score to identify hemolysis in plasma and serum samples. Bioanalysis. 2014;6(9):1215-26. doi: 10.4155/bio.13.344.
16. Blondal T, Nielsen SJ, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1 ):S1-6. doi:10.1016/j.ymeth.2012.09.015.
17. 17 Romakina VV, Zhirov IV, Nasonova SN, et al. MicroRNAs as Biomarkers of Cardiovascular Diseases. Kardiologiia. 2018;58( 1):66-71. (In Russ.) doi:10.18087/cardio.2018.1.10083.
18. Kim GH. MicroRNA regulation of cardiac conduction and arrhythmias. Transl Res. 2013; 161 (5):381-92. doi: 10.1016/j.trsl.2012.12.004.
19. Kaur A, Mackin ST, Schlosser K, et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020;116(6):1113-24. doi:10.1093/cvr/cvz302.
20. Sun X, Belkin N, Feinberg MW. Endothelial microRNAs and atherosclerosis. Curr Atheroscler Rep. 2013;15(12):372. doi:10.1007/s11883-013-0372-2.
21. Jin H, Li DY, Chernogubova E, et al. Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Mol Ther. 2018;26(4):1040-55. doi: 10.1016/j.ymthe.2018.01.011.
22. Chen C, Wang Y, Yang S, et al. MiR-320a contributes to atherogenesis by augmenting multiple risk factors and downregulating SRF. J Cell Mol Med. 2015;19(5):970-85. doi:10.1111/jcmm.12483.
23. Neth P, Nazari-Jahantigh M, Schober A, et al. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013;99(2):294-303. doi:10.1093/cvr/cvt096.
24. Stather PW, Sylvius N, Wild JB, et al. Differential MicroRNA Expression Profiles in Peripheral Arterial Disease. Circ Cardiovasc Genet. 2013;6(5):490-7 doi:10.1161/CIRCGENETICS.111.000053.
25. Jiang Y, Wang HY, Li Y, et al. Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Sci Rep. 2014;4:5026. doi:10.1038/srep05026.
26. Ibragimova AG, Shakhmaeva KR, Stanishevskaya IE, et al. The potential role of miRNAs in calcification of cardiovascular diseases. Russian Journal of Cardiology. 2019;(10): 118-25. (In Russ.) doi:10.15829/1560-4071-2019-10-118-125.
27. Boriani G, Diemberger I, Martignani C, et al. The epidemiological burden of atrial fibrillation: a challenge for clinicians and health care systems. Eur Heart J. 2006;27(8):893-4. doi: 10.1093/eurheartj/ehi651.
Supplementary files
Review
For citations:
Vasiliev S.V., Akselrod A.S., Zhelankin A.V., Schekochikhin D.Yu., Generozov E.V., Sharova E.I., Stonogina D.A. Circulating miR-21-5p, miR-146a-5p, miR-320a-3p in patients with atrial fibrillation in combination with hypertension and coronary artery disease. Cardiovascular Therapy and Prevention. 2022;21(1):2814. (In Russ.) https://doi.org/10.15829/1728-8800-2022-2814