Preview

Cardiovascular Therapy and Prevention

Advanced search

Content of matrix metalloproteinases in the blood of hypertensive patients with a high cardiovascular risk receiving statin therapy

https://doi.org/10.15829/1728-8800-2022-3422

Abstract

Aim. To compare the effect of atorvastatin and rosuvastatin as part of complex therapy in patients with hypertension (HTN) with a high cardiovascular risk on the level of matrix metalloproteinases -1, -9 (MMP-1, MMP-9) and tissue inhibitors of metalloproteinases -1, -4 (TIMP-1, TIMP-4).

Material and methods. The study included 140 hypertensive patients who received atorvastatin (Liprimar) 20 mg/day in addition to antihypertensive therapy for a year, which was later replaced by rosuvastatin (Rosucard) in the following doses: 10 mg/day (n=96), 20 mg/day (n=24), 40 mg/day (n=26). Patients underwent standard clinical and paraclinical investigations. In the blood serum of patients, the levels of MMP-1, MMP-9 and TIMP-1, TIMP-4 were determined.

Results. Patients who used rosuvastatin at a dose of 40 mg/day had a more pronounced decrease in MMP-1 than those treated with rosuvastatin at a dose of 10 and 20 mg/day (p<0,05), while there were no differences in MMP-1 when using low and medium doses. Rosuvastatin had a less pronounced effect on MMP-9 than on MMP-1, while increasing the dose of rosuvastatin did not affect the intensity of MMP-9 reduction (p>0,05). The content of TIMP-1 and TIMP-4 increased when taking rosuvastatin, while a more pronounced dose-dependent increase in TIMP-1 was observed with rosuvastatin 20 mg/day and 40 mg/day. In addition, the largest increase in TIMP-4 was observed when using rosuvastatin at a dose of 40 mg/day. Atorvastatin had no significant effect on MMP-1 and MMP-9, as well as TIMP-1 and TIMP-4.

Conclusion. Long-term rosuvastatin therapy (10 mg/day, 20 mg/day, 40 mg/day) as part of the complex therapy of cardiovascular patients affects the metabolism of vascular wall elastin and collagen, reducing the level of MMP-1, MMP-9 and increasing the content of TIMP-1, TIMP-4 in the blood.

About the Authors

V. P. Mikhin
Kursk State Medical University
Russian Federation

Kursk



O. A. Osipova
Belgorod State National Research University
Russian Federation

Belgorod



V. V. Vorotyntseva
Kursk City Clinical Emergency Hospital
Russian Federation

Kursk



D. N. Perutsky
Belgorod State National Research University
Russian Federation

Belgorod



N. I. Golovina
Belgorod State National Research University
Russian Federation

Belgorod



References

1. Boytsov SA, Balanova YuA, Shalnova SA, et al. Arterial hypertension among individuals of 25-64 years old: prevalence, awareness, treatment and control. By the data from ECCD. Cardiovascular Therapy and Prevention. 2014;13(4):4-14. (In Russ.) doi:10.15829/1728-8800-2014-4-4-14.

2. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ.) Кобалава Ж. Д., doi:10.15829/1560-4071-2020-3-3786.

3. Portnova EV. Analysis of target organ damage in patients with hypertension and supraventricular arrhythmias against the background of cognitive impairment. Fundamental Research. 2013;9(3):448-52. (In Russ.)

4. Osadchuk MA, Solodenkova KS. Mediators of inflammation: the role in development of vascular lesions and cardiovascular risk evaluation. Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2016;9(4):63-72. (In Russ.) doi:10.17116/kardio20169463-72.

5. Ostroumova ОD, Kochetkov AI, Kopchenov II, et al. The hardness of the vessel wall in patients with arterial hypertension. Systemic Hypertension. 2015;12(2):43-8. (In Russ.) doi:10.26442/SG29073.

6. Fatenkov OV, Simerzin VV, Gagloeva IV, et al. Endothelial dysfunction as predictor of subclinical and manifest atherosclerosis. Science and Innovations in Medicine. 2018;3(3):39-46. (In Russ.) doi:10.35693/2500-1388-2018-0-3-39-46.

7. Kac YаA, Parhonyuk EV, Akimova NS. Stiffness of the vascular wall from the standpoint of connective tissue damage in cardiovascular diseases. Fundamental Research. 2013;5(3):189-95. (In Russ.)

8. Kolpakova AF. Disruptions of elastic arteries properties and endothelial function: modern methods for correction and prevention. Cardiovascular Therapy and Prevention. 2015;14(3):75-81. (In Russ.) doi:10.15829/1728-8800-2015-3-75-81.

9. Golikov AP, Boytsov SA, Mihin VP, et al. Free radical oxidation and cardiovascular disease: correction with antioxidants. Physician. 2003;4:1-5. (In Russ.)

10. Shevchenko OP, Shevchenko АО. Angiotensin II and myocardial infarction. Rational Pharmacotherapy in Cardiology. 2008;4(3):105-10. (In Russ.) doi:10.20996/1819-6446-2008-4-3-105-110.

11. Barsukov AV, Kornejchuk NN, Shustov SB. High-grade arterial hypertension: from symptom to diagnosis. Vestnik SeveroZapadnogo gosudarstvennogo medicinskogo universiteta imeni I. I. Mechnikova. 2017;9(2):7-18. (In Russ.) Барсуков А. В., doi:10.17816/mechnikov2017927-18.

12. Mikhin VP, Zhilyaeva YuA, Vorotyntseva VV, et al. Hypolipidemic and pleiotropic efficacy of rosuvastatin in arterial hypertension patients of high cardiovascular risk in long-term outpatient follow-up. Russian Journal of Cardiology. 2016;(12):90-6. (In Russ.) doi:10.15829/1560-4071-2016-12-90-96.

13. Mihin VP, Zhilyaeva YuA, Chernyatina MA, et al. Hypolipidemic and pleiotropic efficacy of generic statins in patients with high cardiovascular risk in outpatient practice. Russian Medical Journal. 2016; 19:1263-70. (In Russ.) doi:10.15829/1560-4071-2016-12-90-96.

14. Okunevich VI. Hypolipidemic therapy of dyslipoproteidemia with statins: their role in the complex treatment of atherosclerosis. Reviews on clinical pharmacology and drug therapy. 2004;3(4):2-14. (In Russ.) doi:10.17816/RCF193291-301.

15. Yakovenko EI, Mamedov MN. Effect of metabolic effects of statins on clinical manifestations of atherosclerosis. Russian Journal of Cardiology. 2012;(2):85-90. (In Russ.)

16. Drapkina OM, Palatkina LO, Zyatenkova EV. Pleiotropic effects of statins. action on vascular rigidity. Vrach (The Doctor). 2012;9:5-9. (In Russ.)

17. Semenova AE, Sergienko IV. The place of pitavastatin in the treatment and prevention of cardiovascular diseases. Atherosclerosis and dyslipidemia. 2017;3:33-45. (In Russ.)

18. Drapkina OM, Gegenava BB. Statins and carbohydrate metabolism. Effective pharmacotherapy. 2015;32:24-31. (In Russ.)

19. Bubnova MG. Undesirable effects of statin therapy: real evidence. Kardiosomatics. 2019;10(1):51-61. (In Russ.)

20. Ceron CS, Luizon MR. Plasma matrix metalloproteinases in coronary artery disease patients. Eur J Clinical Investigation. 2016;46(1):104-5. doi:10.1111/eci.12537.

21. Prudnikov AR, Schupakova AN. Matrix metalloproteinases: role in the development of myocardial postinfarction remodeling. Regional blood circulation and microcirculation. 2018;17(1):13-24. (In Russ.) doi:10.24884/1682-6655-2018-17-1-13-24.

22. Grigorkevich OS, Mokrov GV, Kosova LYu. Matrix metalloproteinases and their inhibitors. Pharmacokinetics and Pharmacodynamics. 2019;(2):3-16. (In Russ.) doi:10.24411/2587-7836-2019-10040.

23. Ezhov MV, Sergienko IV, Aronov DM, et al. Diagnosis and correction of lipid metabolism disorders for the prevention and treatment of atherosclerosis. Atherosclerosis and dyslipidemia. 2017;3(28):5-22. (In Russ.)

24. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006;113(17):2089-96. doi:10.1161/CIRCULATIONAHA.105.573865.

25. Yasmin, McEniery CM, Wallace S, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(2):372. doi:10.1161/01.ATV.0000151373.33830.41.

26. Castro MM, Rizzi E, Figueiredo-Lopes L, et al. Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis. 2008;198(2):320-31. doi:10.1016/j.atherosclerosis.2007.10.011.

27. Flamant M, Placier S, Dubroca C, et al. Role of matrix metalloproteinases in early hypertensive vascular remodeling. Hypertension. 2007;50(1):212-8. doi:10.1161/HYPERTENSIONAHA.107.089631.

28. Sluijter JP, de Kleijn DP, Pasterkamp G. Vascular remodeling and protease inhibition — bench to bedside. Cardiovasc Res. 2006;69(3):595-603. doi:10.1016/j.cardiores.2005.11.026.

29. Basalyga DM, Simionescu DT, Xiong W, et al. Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation. 2004;110(22):3480-7. doi:10.1161/01.CIR.0000148367.08413.E9.

30. Valente FM, de Andrade DO, Cosenso-Martin LN, et al. Plasma levels of matrix metalloproteinase-9 are elevated in individuals with hypertensive crisis. BMC Cardiovasc Disord. 2020;20(1):132. doi:10.1186/s12872-020-01412-5.


Supplementary files

Review

For citations:


Mikhin V.P., Osipova O.A., Vorotyntseva V.V., Perutsky D.N., Golovina N.I. Content of matrix metalloproteinases in the blood of hypertensive patients with a high cardiovascular risk receiving statin therapy. Cardiovascular Therapy and Prevention. 2022;21(10):3422. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3422

Views: 963


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)