Preview

Cardiovascular Therapy and Prevention

Advanced search

Body composition in patients with heart failure

https://doi.org/10.15829/1728-8800-2022-3451

Abstract

The redistribution of body composition components in heart failure (CHF) is an urgent and poorly understood issue. Despite the significant impact of a decrease in muscle mass, redistribution of fat mass on the course and prognosis of HF, body composition is rarely taken into account in the treatment of this disease. In this regard, the purpose of this review was to systematize the available data and draw the attention of clinicians to this problem. The data presented in the review make it possible to consider the components of body composition as controllable factors, the normalization of which improves the prognosis in patients with HF. The study of pathophysiological mechanisms for the development of body composition anomalies in HF will make it possible to search for new therapeutic targets. Assessment of body composition will make it possible to develop an individual strategy for the treatment of HF, including a set of non-drug measures.

About the Authors

O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



I. A. Skripnikova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



E. K. Yaralieva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



R. P. Myasnikov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Abshire DA, Moser DK, Clasey JL, et al. Body Composition and Bone Mineral Density in Patients with Heart Failure. West J Nurs Res. 2017;39(4):582-99. doi:10.1177/0193945916658885.

2. Skripnikova IA, Yaralieva EK, Drapkina OM. Heart failure and osteoporosis: common pathogenetic components. Cardiovascular Therapy and Prevention. 2022;21(6):3233. (In Russ.) doi:10.15829/1728-8800-2022-3233.

3. Vasan RS, Enserro DM, Beiser AS, et al. Lifetime Risk of Heart Failure Among Participants in the Framingham Study. J Am Coll Cardiol. 2022;79(3):250-63. doi:0.1016/j.jacc.2021.10.043.

4. Jewiss D, Ostman C, Smart NA. The effect of resistance training on clinical outcomes in heart failure: a systematic review and meta-analysis. Int J Cardiol. 2016;221:674-81. doi:10.1016/j.ijcard.2016.07.046.

5. Donataccio MP, Vanzo A, Bosello O. Obesity paradox and heart failure. Eat Weight Disord. 2021;26(6):1697-707. doi:10.1007/ s40519-020-00982-9.

6. Drapkina OM, Kupreyshvili LV, Fomin VV. Body composition and its role in development of metabolic disorders and cardiovascular diseases. Cardiovascular Therapy and Prevention. 2017;16(5):81-5. (In Russ.) doi:10.15829/1728-8800-2017-5-81-85.

7. Vasan RS, Xanthakis V, Lyass A, et al. Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham Study: an echocardiographic study over 3 decades. JACC Cardiovasc Imaging. 2018;11(1):1-11. doi:10.1016/j.jcmg.2017.08.007.

8. Paulus WJ. Unfolding Discoveries in Heart Failure. N Engl J Med. 2020;382(7):679-82. doi:10.1056/NEJMcibr1913825.

9. Schiattarella GG, Tong D, Hill JA. Can HFpEF and HFrEF coexist? Circulation. 2020;141:709-11. doi:10.1161/CIRCULATIONAHA.119.045171.

10. Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res. 2021;117(2):423-34. doi:10.1093/cvr/cvaa217.

11. Zhang L, Bartz TM, Santanasto A, et al. Body Composition and Incident Heart Failure in Older Adults: Results from 2 Prospective Cohorts. J Am Heart Assoc. 2022;11(1):e023707. doi:10.1161/JAHA.121.023707.

12. Sinoway LI, Minotti JR, Davis D, et al. Delayed reversal of impaired vasodilation in congestive heart failure after heart transplantation. Am J Cardiol. 1988;61(13):1076-9. doi:10.1016/0002-9149(88) 90129-4.

13. Aimo A, Saccaro LF, Borrelli C, et al. The ergoreflex: how the skeletal muscle modulates ventilation and cardiovascular function in health and disease. Eur J Heart Fail. 2021;23(9):1458-67. doi:10.1002/ejhf.2298.

14. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716-26. doi:10.1172/JCI120849.

15. Chen P, Liu Z, Luo Y, et al. Predictive value of serum myostatin for the severity and clinical outcome of heart failure. Eur J Intern Med. 2019;64:33-40. doi:10.1016/j.ejim.2019.04.017.

16. Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Dis Markers. 2021:1-17. doi:10.1155/2021/6644631.

17. Tucker WJ, Haykowsky MJ, Seo Y, et al. Impaired Exercise Tolerance in Heart Failure: Role of Skeletal Muscle Morphology and Function. Curr Heart Fail Rep. 2018;15(6):323-31. doi:10.1007/s11897-018-0408-6.

18. Springer J, Springer JI, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Fail. 2017;4(4):492-8. doi:10.1002/ehf2.12237.

19. Fülster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;7(14):512-9. doi:10.1093/eurheartj/ehs381.

20. Zhang Y, Zhang J, Ni W, et al. Sarcopenia in heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2021;8(2):1007-17. doi:10.1002/ehf2.13255.

21. Forman DE, Santanasto AJ, Boudreau R, et al. Impact of Incident Heart Failure on Body Composition Over Time in the Health, Aging, and Body Composition Study Population. Circ Heart Fail. 2017;10(9):e003915. doi:10.1161/CIRCHEARTFAILURE.117.003915.

22. Goletti S, Gruson D. Personalized risk assessment of heart failure patients: more perspectives from transforming growth factor super-family members. Clin Chim Acta. 2015;443:94-9. doi:10.1016/j.cca.2014.09.014.

23. Koutroumpakis E, Kaur R, Taegtmeyer H, et al. Obesity and Heart Failure with Preserved Ejection Fraction. Heart Fail Clin. 2021;17(3):345-56. doi:10.1016/j.hfc.2021.02.003.

24. Haass M, Kitzman DW, Anand IS, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324-31. doi:10.1161/CIRCHEARTFAILURE.110.959890.

25. Rao VN, Zhao D, Allison MA, et al. Adiposity and incident heart failure and its subtypes: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Heart Fail. 2018;6(12):999-1007. doi:10.1016/j.jchf.2018.07.009.

26. Savji N, Meijers WC, Bartz TM, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701-9. doi:10.1016/j.jchf.2018.05.018.

27. Streng KW, Voors AA, Hillege HL, et al. Waist-to-hip ratio and mortality in heart failure. Eur J Heart Fail. 2018;20(9):1269-77. doi:10.1002/ejhf.1244.

28. Samorodskaya IV, Bolotova ЕV, Boytsov SA. Paradox of Obesity and Cardiovascular Mortality. Kardiologiia. 2015;55(9):31-6. (In Russ.) doi:10.18565/cardio.2015.9.31-36.

29. Gioeva ZM, Bogdanov AR, Zaletova T S, et al. Obesity as a Risk Factor for Chronic Heart Failure: A Review of the Literature. Doctor.Ru. 2017;10(139):21-5. (In Russ.)

30. Shestakova M. V. The role of the tissue renin-angiotensinaldosterone system in the development of metabolic syndrome, diabetes mellitus and its vascular complications. Diabetes mellitus. 2010;13(3):14-9. (In Russ.) doi:10.14341/2072-0351-5481.

31. Oblaukhova VI, Ragino YuI. Effects of biomarkers secreted by visceral adipocytes on the cardiovascular system. Atherosclerosis. 2020;16(1):33-52. (In Russ) doi:10.15372/ATER20200106.

32. Kandasamy A, Sung M, Boisvenue J, et al. Adiponectin gene therapy ameliorates high-fat, high-sucrose dietinduced metabolic perturbations in mice. Nutr Diabetes. 2012;10;2(9):e45. doi:10.1038/nutd.2012.18.

33. Kistorp C, Faber J, Galatius S, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112(12):1756-62. doi:10.1161/CIRCULATIONAHA.104.530972.

34. Takada S, Sabe H, Kinugawa S. Abnormalities of Skeletal Muscle, Adipocyte Tissue, and Lipid Metabolism in Heart Failure: Practical Therapeutic Targets. Front Cardiovasc Med. 2020;7:79. doi:10.3389/fcvm.2020.00079.

35. Ballyuzek MF, Mashkova MV. Cachexia syndrome: The present state of the problem and importance in clinical practice. Terapevticheskii Arkhiv. 2015;87(8):111-8. (In Russ.) doi:10.17116/terarkh2015878111-118.

36. Valentova M, Anker SD, von Haehling S. Cardiac Cachexia Revisited. Heart Fail Clin.2020;16(1):61-9. doi:10.1016/j.hfc.2019.08.006.

37. Khan H, Kunutsor S, Rauramaa R, et al. Cardio‐respiratory fitness and risk of heart failure: a population‐based follow‐up study. Eur J Heart Fail. 2014;16(2):180-8. doi:10.1111/ejhf.37.

38. Pandey A, Cornwell WK, Willis B, et al. Body mass index and cardiorespiratory fitness in mid‐life and risk of heart failure hospitalization in older age. JACC Heart Fail. 2017;5(5):367-74. doi:10.1016/j.jchf.2016.12.021.

39. Berry JD, Pandey A, Gao A, et al. Physical fitness and risk for heart failure and coronary artery disease. Circ Heart Fail. 2013;6(4):627-34. doi:10.1161/CIRCHEARTFAILURE.112.000054.

40. Pandey A, LaMonte M, Klein L, et al. Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J Am Coll Cardiol. 2017;69(9):1129-42. doi:10.1016/j.jacc.2016.11.081.

41. Marino F, Scalise M, Cianflone E, et al. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants. 2021;10(7):1-20. doi:10.3390/antiox10071002.

42. Pearson MJ, Smart NA. Aerobic Training Intensity for Improved Endothelial Function in Heart Failure Patients: A Systematic Review and Meta-Analysis. Cardiol Res Pract. 2017;2017:1-10. doi:10.1155/2017/2450202.


Supplementary files

Review

For citations:


Drapkina O.M., Skripnikova I.A., Yaralieva E.K., Myasnikov R.P. Body composition in patients with heart failure. Cardiovascular Therapy and Prevention. 2022;21(12):3451. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3451

Views: 2104


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)