Nucleotide sequence variant of the TPM1 gene in a family with different phenotypes of left ventricular non-compaction
https://doi.org/10.15829/1728-8800-2022-3471
Abstract
Left ventricular non-compaction (LVNC) is a rare, genetically and phenotypically heterogeneous disease, which is often accompanied by diagnostic difficulties.
Aim. To demonstrate several generations of a family with LVNC with various clinical and phenotypic manifestations of the disease (dilated and isolated types of LVNC) with an identified rs397516387 variant of the TPM1 gene.
Material and methods. Based on the multicenter registry "Myocardial Non-compaction", a family with a familial form of LVNC was selected. Next generation sequencing (NGS) was performed on an Ion S5 system (Thermo Fisher Scientific, USA) using Ampliseq technology. Variant was verified using Sanger sequencing on an Applied Biosystem 3500 Genetic Analyzer (Thermo Fisher Scientific, USA). For clinical interpretation, variants in the genes associated with LVNC with a minor allele frequency <0,1% were selected in the gnomAD database (v2.1.1). Results. Variant rs397516387 was found in 5 family members, including the proband. Further examination revealed LVNC in 2 additional family members. The proband and the proband’s uncle had a dilated type of LVNC, and the proband’s mother had an isolated type.
Conclusion. The paper presents several generations of a family with different phenotypic manifestations of LVNC and rs397516387 variant in the TPM1 gene. The beginning of genetic screening from a proband, a thorough collection of a family history and further detailed genetic screening of relatives led to the identification of rs397516387 variant in 4 more family members, which in turn made it possible to conduct an additional examination to confirm the diagnosis and prescribe timely drug therapy.
About the Authors
M. M. KudryavtsevaRussian Federation
Moscow
A. V. Kiseleva
Russian Federation
Moscow
R. P. Myasnikov
Russian Federation
Moscow
O. V. Kulikova
Russian Federation
Moscow
A. N. Meshkov
Russian Federation
Moscow
E. A. Mershina
Russian Federation
Moscow
R. K. Angarsky
Russian Federation
Moscow
Е. A. Sotnikova
Russian Federation
Moscow
M. G. Divashuk
Russian Federation
Moscow
A. A. Zharikova
Russian Federation
Moscow
S. N. Koretsky
Russian Federation
Moscow
D. A. Filatova
Russian Federation
Moscow
V. E. Sinitsyn
Russian Federation
Moscow
N. A. Sdvigova
Russian Federation
Moscow
V. I. Barsky
Russian Federation
Moscow
E. N. Basargina
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Rojanasopondist P, Nesheiwat L, Piombo S, et al. Genetic Basis of Left Ventricular Noncompaction. Circ Genom Precis Med. 2022;15(3):e003517. doi:10.1161/CIRCGEN.121.003517.
2. Iljinsky IM, Ivanov AS, Mozheiko NP, et al. Isolated noncompaction of the left ventricular myocardium: a clinical and morphological study. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):16-25. (In Russ.) doi:10.15825/1995-1191-2020-1-16-25.
3. Miszalski-Jamka K, Jefferies JL, Mazur W, et al. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2017;10(4):e001763. doi:10.1161/CIRCGENETICS.117.001763.
4. Sun H, Hao X, Wang X, et al. Genetics and Clinical Features of Noncompaction Cardiomyopathy in the Fetal Population. Front Cardiovasc Med. 2021;7:617561. doi:10.3389/fcvm.2020.617561.
5. Polyak ME, Mershina EA, Zaklyazminskaya EV. Non-compaction left ventricle myocardium: a symptom, syndrome or development variation? Russian Journal of Cardiology. 2017;(2):106-13. (In Russ.) doi:10.15829/1560-4071-2017-2-106-113.
6. Moraczewska J. Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil. 2020;41(1):39-53. doi:10.1007/s10974-019-09532-y.
7. Rysev NA, Nevzorov IA, Karpicheva OE, et al. The effect of the Gly126Arg substitution in alpha-tropomyosin on the interection between myosin and actin in ATP hydrolysis cycle. Citologiya. 2018;60(8):639-44. (In Russ.) doi:10.31116/tsitol.2018.08.08.
8. Kulikova OV, Myasnikov RP, Mershina EA, et al. Familial left ventricular noncompaction: phenotypes and clinical course. Results of the multicenter registry. Terapevticheskii arkhiv. 2021;93(4):381-8. (In Russ.) doi:10.26442/00403660.2021.04.200677.
9. Kulikova OV, Myasnikov RP, Meshkov AN, et al. Variant of the FLNC gene nucleotide sequence in a family with different phenotypic manifestations of left ventricular non-compaction. Russian Journal of Cardiology. 2021;26(10):4748. (In Russ.) doi:10.15829/1560-4071-2021-4748.
10. Jenni R, Oechslin E, Schneider J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666-71. doi:10.1136/heart.86.6.666.
11. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):1015. doi:10.1016/j.jacc.2005.03.045.
12. Kulikova O, Brodehl A, Kiseleva A, et al. The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular NonCompaction Cardiomyopathy. Genes (Basel). 2021;12(1):121. doi:10.3390/genes12010121.
13. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43. doi:10.1038/s41586-0202308-7.
14. England J, Granados-Riveron J, Polo-Parada L, et al. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol. 2017;106:1-13. doi:10.1016/j.yjmcc.2017.03.006.
15. Chang B, Nishizawa T, Furutani M, et al. Identification of a novel TPM1 mutation in a family with left ventricular noncompaction and sudden death. Mol Genet Metab. 2011;102(2):200-6. doi:10.1016/j.ymgme.2010.09.009.
16. Nijak A, Alaerts M, Kuiperi C, et al. Left ventricular noncompaction with Ebstein anomaly attributed to a TPM1 mutation. Eur J Med Genet. 2018;61(1):8-10. doi:10.1016/j.ejmg.2017.10.003.
17. Tian T, Wang J, Wang H, et al. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular noncompaction. Heart Vessels. 2015;30(2):258-64. doi:10.1007/s00380-014-0503-x.
18. Kelle AM, Bentley SJ, Rohena LO, et al. Ebstein anomaly, left ventricular non-compaction, and early onset heart failure associated with a de novo α-tropomyosin gene mutation. Am J Med Genet A. 2016;170(8):2186-90. doi:10.1002/ajmg.a.37745.
19. Bainbridge MN, Davis EE, Choi WY, et al. Loss of function mutations in NNT are associated with left ventricular noncompaction. Circ Cardiovasc Genet. 2015;8(4):544-52. doi:10.1161/CIRCGENETICS.115.001026.
20. Hoedemaekers YM, Caliskan K, Michels M, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet. 2010;3(3):232-9. doi:10.1161/CIRCGENETICS.109.903898.
21. Probst S, Oechslin E, Schuler P, et al. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 2011;4(4):367-74. doi:10.1161/CIRCGENETICS.110.959270.
22. van de Meerakker JB, Christiaans I, Barnett P, et al. A novel alpha-tropomyosin mutation associates with dilated and noncompaction cardiomyopathy and diminishes actin binding. Biochim Biophys Acta. 2013;1833(4):833-9. doi:10.1016/j.bbamcr.2012.11.003.
23. van Waning JI, Caliskan K, Hoedemaekers YM, et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. J Am Coll Cardiol. 2018;71(7):711-22. doi:10.1016/j.jacc.2017.12.019.
Supplementary files
Review
For citations:
Kudryavtseva M.M., Kiseleva A.V., Myasnikov R.P., Kulikova O.V., Meshkov A.N., Mershina E.A., Angarsky R.K., Sotnikova Е.A., Divashuk M.G., Zharikova A.A., Koretsky S.N., Filatova D.A., Sinitsyn V.E., Sdvigova N.A., Barsky V.I., Basargina E.N., Drapkina O.M. Nucleotide sequence variant of the TPM1 gene in a family with different phenotypes of left ventricular non-compaction. Cardiovascular Therapy and Prevention. 2022;21(12):3471. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3471