Long-term outcomes of renal denervation in the treatment of comorbid patients with hypertension, diabetes and coronary atherosclerosis
https://doi.org/10.15829/1728-8800-2023-3706
EDN: TWOHHC
Abstract
Aim. To study the clinical effects and long-term outcomes of catheterbased renal denervation (CRD) in patients with cardiovascular disease and diabetes.
Material and methods. This single-center prospective observational study included 60 patients with uncontrolled hypertension, type 2 diabetes, and coronary artery disease after complete endovascular revascularization. Patients were divided into 30 groups into the CRD group and the control group. CRD was performed via femoral access using a Spyral catheter (Medtronic, USA). The primary endpoint was the change in glycemic levels after 12 months.
Results. In the CRD group, a significant decrease in basal glycemia level from 9,3 (7,67-10,12) to 6,05 (5,2-8,3) mmol/l, glycated hemoglobin from 7,6 (6,98,4) to 6,6 (6,2-7,2)%, Homeostasis Model Assessment Insulin Resistance (HOMA-IR) from 6,6 (3,73-11,2) to 4,76 (2,73-7,1) — in the absence of significant changes in the control group. A significant decrease in the average level of office systolic (-14 (-24; -10) mm Hg, p=0,0002) and diastolic blood pressure (-10 (-10; -6) mm Hg, p=0,0002), p=0,0007) was also revealed — in the absence of significant changes in the control group. There were no significant differences in late lumen loss between the groups: 21,8% (17,3-28,8) in the CRD group vs 26,3% (19,5-34,0) in the control group (p=0,09).
Conclusion. A positive effect of CRD on carbohydrate metabolism in patients with type 2 diabetes, hypertension and coronary artery disease was revealed. The hypothesis of the pleiotropic effects of CRD was confirmed.
Keywords
About the Authors
N. A. ArablinskyRussian Federation
Moscow
D. A. Feshchenko
Russian Federation
Moscow
B. A. Rudenko
Russian Federation
Moscow
F. B. Shukurov
Russian Federation
Moscow
D. K. Vasiliev
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Massi-Benedetti M. The cost of diabetes Type II in Europe: the CODE-2 Study. Diabetologia. 2002;45(7):S1-4. doi:10.1007/ s00125-002-0860-3.
2. Fishman SL, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018;24(1):59. doi:10.1186/s10020-018-0060-3.
3. Jankauskas SS, Kansakar U, Varzideh F, et al. Heart failure in diabetes. Metabolism. 2021:154910. doi:10.1016/j.metabol.2021.154910.
4. Ruiz HH, Ramasamy R, Schmidt AM. Advanced glycation end products: building on the concept of the "Common Soil" in metabolic disease. Endocrinology. 2020;161(1). doi:10.1210/endocr/bqz006.
5. Shu J, Matarese A, Santulli G. Diabetes, body fat, skeletal muscle, and hypertension: the ominous chiasmus? J Clin Hypertens (Greenwich).2019;21(2):239-42. doi:10.1111/jch.13453.
6. Shu J, Santulli G. Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis. 2018;275: 379-81. doi:10.1016/j.atherosclerosis.2018.05.033.
7. Mone P, Pansini A, Rizzo M, Minicucci F, Mauro C. St-elevation myocardial infarction patients with hyperglycemia: effects of intravenous adenosine. Am J Med Sci. 2021. doi:10.1016/j.amjms.2021.06.025.
8. Paramasivam G, Devasia T, Jayaram A, Rao MS, Vijayvergiya R, Nayak K. In-stent restenosis of drug-eluting stents in patients with diabetes mellitus: clinical presentation, angiographic features, and outcomes. Anatol J Cardiol. 2020;23(1):28-34. doi:10.14744/AnatolJCardiol.2019.72916.
9. Zhao L, Zhu W, Zhang X, He D, Guo C. Effect of diabetes mellitus on long-term outcomes after repeat drug-eluting stent implantation for in-stent restenosis. BMC Cardiovasc Disord. 2017;17(1):16. doi:10.1186/s12872-016-0445-6.
10. Boytsov SA, Balanova YuA, Shalnova SA, et al. Arterial hypertension among individuals of 25-64 years old: prevalence, awareness, treatment and control. by the data from ECCD. Cardiovascular Therapy and Prevention. 2014;13(4):4-14. (In Russ.) doi:10.15829/1728-8800-2014-4-4-14.
11. Müller J, Barajas L.Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res. 1972;41(5):533-49. doi:10.1016/s0022-5320(72)90054-8.
12. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:19406. doi:10.1161/CIRCULATIONAHA.110.991869.
13. Chen W, Chang Y, He L, et al. Effect of renal sympathetic denervation on hepatic glucose metabolism and blood pressure in a rat model of insulin resistance. J Hypertens. 2016;34:2465-74. doi:10.1097/HJH.0000000000001087.
14. Krum H, Schlaich MP, Sobotka PA, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study [published correction appears in Lancet. 2014;383(9917):602. Sobotka, Paul A [added]. Lancet. 2014;383(9917):622-9. doi:10.1016/S01406736(13)62192-3.
15. Esler MD, Krum H, Schlaich M, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976-82. doi:10.1161/CIRCULATIONAHA.112.130880.
16. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTNOFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160-70. doi:10.1016/S01406736(17)32281-X.
17. Kandzari DE, Böhm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391(10137):2346-55. doi:10.1016/S0140-6736(18)30951-6.
18. Sesa-Ashton G, Nolde JM, Muente I, et al. Catheter-Based Renal Denervation: 9-Year Follow-Up Data on Safety and Blood Pressure Reduction in Patients With Resistant Hypertension. 2023;80(4):811-9. doi:10.1161/HYPERTENSIONAHA.122.20853.
19. Barbato E, Azizi M, Schmieder RE, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2023; 44(15):1313-30. doi:10.1093/eurheartj/ehad054.
20. Pan T, Guo JH, Ling L, et al. Effects of Multi-Electrode Renal Denervation on Insulin Sensitivity and Glucose Metabolism in a Canine Model of Type 2 Diabetes Mellitus. J Vasc Interv Radiol. 2018;29(5):731-8.e2. doi:10.1016/j.jvir.2017.12.011.
21. Mahfoud F, Cremers B, Janker J, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419-24. doi:10.1161/HYPERTENSIONAHA.112.193870.
22. Verloop WL, Spiering W, Vink EE, et al. Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension. 2015;65(4):751-7. doi:10.1161/HYPERTENSIONAHA.114.04798.
23. Zhang Z, Liu K, Xiao S, et al. Effects of catheter based renal denervation on glycemic control and lipid levels: a systematic review and meta analysis. Acta Diabetol. 2021;58:603-14. doi:10.1007/s00592-020-01659-6.
24. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative metaanalysis of 102 prospective studies. Lancet. 2010;375:2215-22. doi:10.1016/S0140-6736(10)60484-9.
25. Huggett RJ, Scott EM, Gilbey SG, et al. Impact of Type 2 Diabetes Mellitus on Sympathetic Neural Mechanisms in Hypertension. Circulation. 2003;108(25):3097-101. doi:10.1161/01.CIR.0000103123. 66264.FE.
26. Falkovskaya AYu, Mordovin VF, Pekarsky SY, et al. Dynamics of glycemic control after renal denervation in patients with resistant hypertension and type 2 diabetes mellitus. Bulletin of Siberian Medicine. 2015;14(5):82-90. (In Russ.) doi:10.20538/1682-0363-2015-5-82-90.
27. Manukyan M, Falkovskaya A, Mordovin V, et al. Favorable effect of renal denervation on elevated renal vascular resistance in patients with resistant hypertension and type 2 diabetes mellitus. Front Cardiovas Med. 2022;9:1010546. doi:10.3389/ fcvm.2022.1010546.
28. Iijima R, Ndrepepa G, Mehilli J, et al. Impact of diabetes mellitus on long-term outcomes in the drug-eluting stent era. Am Heart J. 2007;154:688-93. doi:10.1016/j.ahj.2007.06.005.
29. Stettler C, Allemann S, Wandel S, et al. Drug eluting and bare metal stents in people with and without diabetes:collaborative network meta-analysis. BMJ. 2008;337:a1331. doi:10.1136/bmj.a1331.
30. Billinger M, Räber L, Hitz S, et al. Long-term clinical and angiographic outcomes of diabetic patients after revascularization with early generation drug-eluting stents. Am Heart J. 2012;163:87686. doi:10.1016/j.ahj.2012.02.014.
31. Kobayashi T, Sotomi Y, Suzuki S, et al. Five-year clinical efficacy and safety of contemporary thin-strut biodegradable polymer versus durable polymer drug-eluting stents: a systematic review and meta-analysis of 9 randomized controlled trials. Cardiovasc Interv Ther. 2020;35(3):250-8. doi:10.1007/s12928-019-00613-w.
32. Mone P, Gambardella J, Minicucci F, et al. Hyperglycemia drives stent restenosis in STEMI patients. Diabetes Care. 2021;44(11):e192-3. doi:10.2337/dc21-0939.
33. Zhao LP, Xu WT, Wang L, et al. Influence of insulin resistance on in-stent restenosis in patients undergoing coronary drugeluting stent implantation after long-term angiographic follow-up. Coron Artery Dis. 2015;26(1):5-10. doi:10.1097/ MCA.0000000000000170.
34. Hong SJ, Kim MH, Ahn TH, et al. Multiple predictors of coronary restenosis after drug-eluting stent implantation in patients with diabetes. Heart. 2006;92(8):1119-24. doi:10.1136/hrt.2005.075960.
Supplementary files
What is already known about the subject?
- Sympathetic nervous system hyperactivation is one of the universal pathogenetic mechanisms, which, in particular, has a certain significance in the development and progression of cardiovascular pathology and metabolic disorders.
- The combination of hypertension and diabetes in a patient leads to a more aggressive course of both diseases, as well as a more frequent development of cardiovascular events, which requires more intensive treatment strategies.
- Renal denervation in the treatment of these diseases is pathogenetically justified. The results of large multicenter randomized clinical trials in recent years demonstrate strong antihypertensive effect. However, other effects of renal denervation remain incompletely studied.
What might this study add?
- The results of a unique prospective study evaluating the long-term outcomes of renal denervation using radiofrequency ablation with a multipolar catheter (Spyral, Medtronic) on carbohydrate metabolism in patients with uncontrolled hypertension and type 2 diabetes who underwent endovascular revascularization for stable coronary artery disease are presented.
- The use of renal denervation, due to its effect on the neurohumoral regulation of metabolism, has systemic effects in individuals with multimorbid pathology in the form of a significant positive effect on carbohydrate metabolism, the degree of insulin resistance, and control of office blood pressure.
- The clinical effects and safety of renal denervation have been confirmed in comorbid patients with a very high cardiovascular risk.
Review
For citations:
Arablinsky N.A., Feshchenko D.A., Rudenko B.A., Shukurov F.B., Vasiliev D.K., Drapkina O.M. Long-term outcomes of renal denervation in the treatment of comorbid patients with hypertension, diabetes and coronary atherosclerosis. Cardiovascular Therapy and Prevention. 2023;22(9):3706. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3706. EDN: TWOHHC