Preview

Cardiovascular Therapy and Prevention

Advanced search

Importance of biological markers in the assessment of endothelial dysfunction

https://doi.org/10.15829/1728-8800-2024-4061

EDN: XIZKXF

Abstract

Endothelial dysfunction (ED) is a pathogenetic link in many cardio­vas­cular diseases. One of the promising approaches to non-invasi­ve diagnostics and assessment of the ED severity may be the deter­mi­nation of specific blood biomarkers. This review is devoted to the patho­genetic role of some biochemical and molecular factors associated with ED, as potential biomarkers of noncommunicable diseases.

About the Authors

Yu. S. Timofeev
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. A. Mikhailova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. N. Dzhioeva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Vasina LV, Petrishchev NN, Vlasov TD. Endothelial dysfunction and its main markers. Regional blood circulation and microcirculation. 2017;16(1):4-15. (In Russ.) doi:10.24884/1682-6655-2017-16-1-4-15.

2. Vlasov TD, Nesterovich II, Shimanski DA. Endothelial dys­fun­c­tion: from specific to general. Return to the "old para­digm"? Regional blood circulation and microcirculation. 2019;18(2):19-27. (In Russ.) doi:10.24884/1682-6655-2019-18-2-19-27.

3. Potapova EV, Mikhailova MA, Koroleva AK, et al. Multiparametric approach to assessing skin microcirculation in dermatological patients (using the example of psoriasis). Human Physiology. 2021;47(6):33-42. (In Russ.) doi:10.31857/s013116462105009x.

4. Filina MA, Potapova EV, Makovik IN, et al. Functional changes in blood microcirculation in the skin of the foot during thermal tests in patients with diabetes mellitus. Human physiology. 2017;43(6):95-102. (In Russ.) doi:10.7868/S0131164617060029.

5. Potapova EV, Dremin VV, Zherebtsov EA, et al. Assessment of microcirculatory disorders in rheumatological patients using the diffuse reflectance spectroscopy method. Human physiology. 2017;2(43):116-24. (In Russ.) doi:10.7868/S0131164617020138.

6. Popykhova EB., Stepanova TV, Lagutina DD, et al. The role of dia­betes mellitus in the occurrence and development of endo­the­lial dysfunction. Problems of endocrinology. 2020;66(1):47-55. (In Russ.) doi:10.14341/probl12212.

7. Stepanova TV, Ivanov AN, Terechkina NE, et al. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance (literature review). Clinical laboratory diagnostics. 2019;64(1):34-41. (In Russ.) doi:10.18821/OB69-20190-64-1-34-41.

8. Fateeva VV, Vorobyova OV. Markers of endothelial dysfunction in chronic cerebral ischemia. Journal of Neurology and Psychiatry na­med after. S. S. Korsakov. 2017;117(4):107-12. (In Russ.) doi:10.17116/jnevro201711741107-111.

9. Shabrov AV, Apresyan AG, Dobkes AL, et al. Modern methods for assessing endothelial dysfunction and the possibility of their use in practical medicine. Rational pharmacotherapy in car­diology. 2016;12(6):733-42. (In Russ.) doi:10.20996/1819-6446-2016-12-6-733-742.

10. Ivanov AN, Greshihin AA, Norkin IA, et al. Methods for diagnosing endothelial dysfunction. Regional blood circulation and micro­circulation. 2014;13(4):4-11. (In Russ.) doi:10.24884/1682-6655-2014-13-4-4-11.

11. Shabrov A.V, Galenko AS, Uspenskiy YuP, et al. Methods for diagnosing endothelial dysfunction. Bulletin of Siberian Medi­cine. 2021;20(2):202-9. (In Russ.) doi:10.20538/1682-0363-2021-2-202-209.

12. Shevchenko YuL, Stoyko YuM, Gudymovich VG, et al. Glycocalyx is a determining factor in the development of endothelial venous dysfunction and the possibility of its correction. Angiology and Vascular Surgery. 2020;26(4):71-6. (In Russ.) doi:10.33529/ANGIO2020404.

13. Chernyago TYu, Fomina VS, Fedyk OV, et al. Methods for asses­sing the functional state of the endothelium in patients with varicose veins of the lower extremities: prospects for thera­peutic tactics. Bulletin of the National Medical and Surgical Cen­ter named after. NI Pirogov. 2021;16(1):145-50. (In Russ.) doi:10.25881/BPNMSC.2021.17.48.028.

14. Cyr AR, Huckaby LV, Shiva SS, et al. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36(2):307-21. doi:10.1016/j.ccc.2019.12.009.

15. Katargina LA, Chesnokova NB, Arestova NN, et al. The content of endothelin-1 in the tear fluid of children with primary congenital glaucoma. Russian Ophthalmological Journal. 2023;16(1):36-40. (In Russ.) doi:10.21516/2072-0076-2023-16-1-36-40.

16. Chesnokova NB, Pavlenko TA, Beznos OV, et al. The role of the endothelin system in the pathogenesis of eyediseases. Vestnik Oftalmologii. 2020;136(1):117-23. (In Russ.) doi:10.17116/oftalma2020136011117.

17. Salvatore S, Vingolo EM. Endothelin-1 role in human eye: a review. J Ophthalmol. 2010;2010:354645. doi:10.1155/2010/354645.

18. Alieva AM, Shirkova NN, Pinshuk TV, et al. Endothelins and car­diovascular pathology. Russian Journal of Cardiology. 2014; (11):83-7. (In Russ.) doi:10.15829/1560-4071-2014-11-83-87.

19. Naya M, Aikawa T, Manabe O, et al. Elevated serum endothelin-1 is an independent predictor of coronary microvascular dys­function in non-obstructive territories in patients with coronary artery disease. Heart Vessels. 2021;36(7):917-23. doi:10.1007/s00380-020-01767-x.

20. Wu MD, Atkinson TM, Lindner JR. Platelets and von Willebrand fac­tor in atherogenesis. BLOOD. 2017;129(11):1415-9. doi:10.1182/blood-2016-07-692673.

21. Kulik EG, Pavlenko VI, Naryshkina SV. Von Willebrand factor and vascular endothelial dysfunction in patients with chronic obs­tructive pulmonary disease. Amur Medical Journal. 2017; 1(17):41-3. (In Russ.) doi:10.22448/amj.2017.17.41-43.

22. Marchenko VA, Barachkova SV, Zelinskaya IA, et al. Ex­pression of endothelial factors in human endothelial cells during infection caused by influenza A virus (H1N1) pdm09 (Orthomyxoviridae; Alphainfluenzavirus). Problems of Virology. 2021;66(3):198-210. (In Russ.) doi:10.36233/0507-4088-48.

23. Leite AR, Borges-Canha M, Cardoso R, et al. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology. 2020;71(5): 397-410. doi:10.1177/0003319720903586.

24. Gorbacheva AM, Bibik EE, Dobreva EA, et al. Soluble endoglin is a potential marker of endothelial dysfunction in patients with primary hyperparathyroidism: a pilot study. Obesity and Me­ta­bolism. 2023;19(4):358-68. (In Russ.) doi:10.14341/omet12923.

25. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022;23(2):73. doi:10.31083/j.rcm2302073.

26. Gallardo-Vara E, Gamella-Pozuelo L, Perez-Roque L, et al. Po­tential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells. 2020;9(4):988. doi:10.3390/cells9040988.

27. Buda V, Andor M, Baibata DE, et al. Decreased sEng plasma levels in hypertensive patients with endothelial dysfunction under chronic treatment with Perindopril. Drug Des Devel Ther. 2019;13:1915-25. doi:10.2147/DDDT.S186378.

28. Balta S, Balta I, Mikhailidis DP. Endocan: a new marker of endothelial function. Curr Opin Cardiol. 2021;36(4):462-8. doi:10.1097/HCO.0000000000000867.

29. Rangarajan S, Richter JR, Robert P, et al. Heparanase-en­han­ced Shedding of Syndecan-1 and Its Role in Driving Di­sea­se Pathogenesis and Progression. Journal of Histoche­mistry & Cytochemistry. 2020;68(12):823-40. doi:10.1369/0022155420937087.

30. Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Di­abetes. 2006;55:1127-32. doi:10.2337/diabetes.55.04.06.db05-1619.

31. Kolseth IB, Reine TM, Parker K, et al. Increased levels of inflammatory mediators and proinflammatory monocytes in patients with type I diabetes mellitus and nephropathy. J. Diabetes Complications. 2017;31:245-52. doi:10.1016/j.jdiacomp.2016.06.029.

32. Padberg JS, Wiesinger A, di Marco GS, et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis. 2014;234:335-343. doi:10.1016/j.atherosclerosis.2014.03.016.

33. Neves FM, Meneses GC, Sousa NE, et al. Syndecan-1 in acute decompensated heart failure- association with renal function and mortality. Circ J. 2015;79(7):1511-9. doi:10.1253/circj.CJ-14-1195.

34. Lipphardt M, Dihazi H, Maas JH, et al. Syndecan-4 as a Marker of Endothelial Dysfunction in Patients with Resistant Hypertension. J Clin Med. 2020;9(9):3051. doi:10.3390/jcm9093051.

35. Desantis V, Potenza MA, Sgarra L, et al. MicroRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci. 2023;24(6):5307. doi:10.3390/ijms24065307.

36. Nishita-Hiresha V, Varsha R, Jayasuriya R, et al. The role of circRNA-miRNA-mRNA interaction network in endothelial dysfunction. 2023;851:146950. doi:10.1016/j.gene.2022.146950.

37. Drapkina OM, Dikur ON, Ashikhmin YaI, et al. Endothelial func­tion in patients with high-risk arterial hypertension. Arterial hyper­tension. 2010;16(2):156-63. (In Russ.)

38. Abuldinova OA, Prikhodko OB, Wojciechowski VV, et al. Evaluation of contour analysis of the photoplethysmogram in healthy young people. Bulletin of Physiology and Pathology of Respiration. 2020;76:41-5. (In Russ.) doi:10.36604/1998-5029-76-41-45.

39. Tsertsvadze LK, Avdeeva MV, Shcheglova LV, et al. Markers of endothelial dysfunction in adolescent and young patients with hypothalamic syndrome. Obesity and Metabolism. 2020;17(3):257-68. (In Russ.) doi:10.14341/omet12354.

40. Kulikov DA, Glazkov AA, Kovaleva YuA, et al. Prospects for the use of laser Doppler flowmetry in the assessment of cutaneous blood microcirculation in diabetes mellitus. Diabetes mellitus. 2017;20(4):279-285. (In Russ.) doi:10.14341/DM8014.

41. Ruyatkina LA, Iskhakova IS, Nikolaev KYu, et al. Associations of functional and biochemical parameters of endothelial dysfunction in postmenopausal women with different states of carbohydrate metabolism. Diabetes mellitus. 2015;18(4):105-12. (In Russ.) doi:10.14341/DM7561.

42. Metelskaya VA. Multimarker diagnostic panels for athero­sclerosis. Russian Journal of Cardiology. 2018;(8):65-73. (In Russ.) doi:10.15829/1560-4071-2018-8-65-73.

43. Metelskaya VA, Gomyranova NV, Yarovaya EB, et al. A new complex marker for elevated arterial stiffnes estimation. Atero­scleroz. 2020;16(1):14-21. (In Russ.) doi:10.15372/ATER20200103.


Supplementary files

What is already known about the subject?

  • Endothelial dysfunction (ED) is a primary link in the pathogenesis of cardiovascular diseases.
  • Endothelium pathological changes are characterized by impaired production and alterations in the composition and concentration of produced bioactive compounds.
  • Currently, a fairly narrow range of laboratory parameters is used to assess ED, while the significance of many of them remains insufficiently studied.

What might this study add?

  • A systematization of literary data devoted to the study of ED biochemical markers was carried out, starting with generally accepted ones, such as nitric oxide metabolites and endothelin 1-21, and ending with less studied biochemical and molecular markers.
  • ED-associated parameters are described, including endoglin, endocan, syndecan family proteins and micro-RNA, which can be considered as potential biomarkers of cardiovascular disease risk.

Review

For citations:


Timofeev Yu.S., Mikhailova M.A., Dzhioeva O.N., Drapkina O.M. Importance of biological markers in the assessment of endothelial dysfunction. Cardiovascular Therapy and Prevention. 2024;23(9):4061. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4061. EDN: XIZKXF

Views: 485


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)