Artifacts of analysis in cell line identification by short tandem repeat profiling
https://doi.org/10.15829/1728-8800-2024-4121
EDN: MNQAWT
Abstract
Aim. To study and describe the most common types of artifacts in detection of short tandem repeat (STR) amplicons by capillary electrophoresis and cause difficulties in interpreting the obtained STR profiles.
Material and methods. Cell lines were obtained from the bioresource collection of cell lines of the Blokhin National Medical Research Center of Oncology. DNA was isolated according to the manufacturer’s instructions of the DNeasy Blood & Tissue (QIAGEN, Germany) and ExtractDNA Blood & Cells (Evrogen, Russia) kits. DNA concentration was measured using a Qubit 4.0 device (Thermo Fisher Scientific, USA) and a Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific, USA). Multiplex PCR was performed using a COrDIS EXPERT26 reagent kit (Gordiz, Russia). Capillary electrophoresis of PCR products was performed on a 3500xL Genetic Analyzer (Applied Biosystems, USA). GeneMapper Software v6.0 (Thermo Fisher Scientific, USA) was used to process electrophoresis data.
Results. The most well-known artifacts associated with the STR profiling and subsequent capillary electrophoretic separation of amplicons were studied. Cases of detection of these artifacts from personal practice are given. Recommendations for improving the electrophoresis pattern are given.
Conclusion. The paper studies the artifacts of analysis in cell line STR profiling by capillary electrophoresis (STR-CE), which researchers encounter in laboratory practice. Common types of analysis artifacts that cause difficulties in interpreting the results obtained during STR profiling, as well as possible reasons for their occurrence, are described in detail and illustrated with examples from our own practice. Recommendations are given for reducing the number of non-specific fluorescent signals and their intensity.
About the Authors
A. A. MalchenkovaRussian Federation
Moscow
E. N. Kosobokova
Russian Federation
Moscow
References
1. Nardone RM. Eradication of cross-contaminated cell lines: a call for action. Cell Biol Toxicol. 2007;23(6):367-72. doi:10.1007/s10565-007-9019-9.
2. Freedman LP, Gibson MC, Ethier SP, et al. Reproducibility: changing the policies and culture of cell line authentication. Nat Methods. 2015;12(6):493-7. doi:10.1038/nmeth.3403.
3. Freedman LP, Gibson MC, Wisman R, et al. The culture of cell culture practices and authentication — Results from a 2015 Survey. Biotechniques. 2015;59(4):189-90. doi:10.2144/000114344.
4. Bian X, Yang Z, Feng H, et al. A Combination of Species Identification and STR Profiling Identifies Cross-contaminated Cells from 482 Human Tumor Cell Lines. Sci Rep. 2017;7:9774. doi:10.1038/s41598-017-09660-w.
5. Souren NY, Fusenig NE, Heck S, et al. Cell line authentication: a necessity for reproducible biomedical research. EMBO J. 2022; 41(14):e111307. doi:10.15252/embj.2022111307.
6. Lin LC, Elkashty O, Ramamoorthi M, et al. Cross-contamination of the human salivary gland HSG cell line with HeLa cells: A STR analysis study. Oral Dis. 2018;24(8):1477-83. doi:10.1111/odi.12920.
7. Horbach SPJM, Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS One. 2017;12(10):e0186281. doi:10.1371/journal.pone.0186281.
8. Ye F, Chen C, Qin J, et al. Genetic profiling reveals an alarming rate of cross-contamination among human cell lines used in China. FASEB J. 2015;29(10):4268-72. doi:10.1096/fj.14-266718.
9. Korch C, Hall EM, Dirks WG, et al. Authentication of M14 melanoma cell line proves misidentification of MDA-MB-435 breast cancer cell line. Int J Cancer. 2018;142(3):561-72. doi:10.1002/ijc.31067.
10. Almeida JL, Cole KD, Plant AL. Standards for Cell Line Authentication and Beyond. PLoS Biol. 2016;14(6):e1002476. doi:10.1371/journal.pbio.1002476.
11. Vicente E, Lesniewski M, Newman D, et al. Best Practices for Authentication of Cell Lines to Ensure Data Reproducibility and Integrity. Radiat Res. 2022;197(3):209-17. doi:10.1667/RADE-2100148.1.
12. Yu M, Selvaraj SK, Liang-Chu MM, et al. A resource for cell line authentication, annotation and quality control. Nature. 2015; 520(7547):307-11. doi:10.1038/nature14397.
13. Kosobokova EN, Malchenkova AA, Kalinina NA, et al. Using short tandem repeat profiling to validate cell lines in biobanks. Cardiovascular Therapy and Prevention. 2022;21(11):3386. (In Russ.) doi:10.15829/1728-8800-2022-3386.
14. Anisimov SV, Axmerov TM, Balanovskij OP, et al. Biobanking. National Guide. Moscow: OOO "Izdatel`stvo TRIUMF", 2022. 308 p. (In Russ.) ISBN 978-5-93673-322-2.
15. Parson W, Kirchebner R, Mühlmann R, et al. Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J. 2005;19(3):434-6. doi:10.1096/fj.04-3062fje.
16. Almeida JL, Hill CR, Cole KD. Mouse cell line authentication. Cytotechnology. 2014;66(1):133-47. doi:10.1007/s10616-013-9545-7.
17. Almeida JL, Dakic A, Kindig K, et al. Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS One. 2019;14(6):e0218412. doi:10.1371/journal.pone.0218412.
18. Almeida JL, Hill CR, Cole KD. Authentication of African green monkey cell lines using human short tandem repeat markers. BMC Biotechnol. 2011;11:102. doi:10.1186/1472-6750-11-102. PMID: 22059503; PMCID: PMC3221628.
19. Chen YH, Connelly JP, Florian C, et al. Short tandem repeat profiling via next-generation sequencing for cell line authentication. Dis Model Mech. 2023;16(10):dmm050150. doi:10.1242/dmm.050150.
20. Butler JM. "Chapter 3 — STR alleles and amplification artifacts," in Advanced topics in forensic DNA typing: Interpretation. Editor JM Butler (San Diego: Academic Press, 2015:47-86). ISBN: 978-0-12-405213-0.
21. Gilbert DA, Reid YA, Gail MH, et al. Application of DNA fingerprints for cell-line individualization. Am J Hum Genet. 1990;47(3): 499-514.
22. Bukreev YuM, Kosobokova EN, Kardashova SS, et al. DNA-markers for genetic monitoring of laboratory mouse. Russian Journal of Biotherapy. 2017;16(3):86-91. (In Russ.) doi:10.17650/1726-9784-2017-16-3-86-91.
23. Goor RM, Forman Neall L, Hoffman D, et al. A mathematical approach to the analysis of multiplex DNA profiles. Bull Math Biol. 2011;73(8):1909-31. doi:10.1007/s11538-010-9598-0.
24. Mohammed O, Assaleh K, Husseini G, et al. Novel algorithms for accurate DNA base-calling. J Biomed Sci Eng. 2013;6:165-74. doi:10.4236/jbise.2013.62020.
25. Gill P, Haned H, Bleka O, et al. Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches — Twenty years of research and development. Forensic Sci Int Genet. 2015;18:100-17. doi:10.1016/j.fsigen.2015.03.014.
26. Puch-Solis R, Pope S. Interpretation of DNA data within the context of UK forensic science — evaluation. Emerg Top Life Sci. 2021;5(3):405-13. doi:10.1042/ETLS20200340.
27. Gill P, Gusmão L, Haned H, et al. DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include dropout and/or drop-in using probabilistic methods. Forensic Sci Int Genet. 2012;6(6):679-88. doi:10.1016/j.fsigen.2012.06.002.
28. Karkar S, Alfonse LE, Grgicak CM, et al. Statistical modeling of STR capillary electrophoresis signal. BMC Bioinformatics. 2019;20:584. doi:10.1186/s12859-019-3074-0.
29. Gilder JR, Doom TE, Inman K, et al. Run-specific limits of detection and quantitation for STR-based DNA testing. J Forensic Sci. 2007;52(1):97-101. doi:10.1111/j.1556-4029.2006.00318.x.
30. Mönich UJ, Duffy K, Médard M, et al. Probabilistic characterisation of baseline noise in STR profiles. Forensic Sci Int Genet. 2015;19:107-22. doi:10.1016/j.fsigen.2015.07.001.
31. Goor RM, Hoffman D, Riley GR. Novel Method for Accurately Assessing Pull-up Artifacts in STR Analysis. Forensic Sci Int Genet. 2021;51:102410. doi:10.1016/j.fsigen.2020.102410.
32. Taylor D, Powers D. Teaching artificial intelligence to read electropherograms. Forensic Sci Int Genet. 2016;25:10-8. doi:10.1016/j.fsigen.2016.07.013.
33. Vilsen SB, Tvedebrink T, Eriksen PS, et al. Stutter analysis of complex STR MPS data. Forensic Sci Int Genet. 2018;35:107-12. doi:10.1016/j.fsigen.2018.04.003.
34. Agudo MM, Aanes H, Roseth A, et al. A comprehensive characterization of MPS-STR stutter artefacts. Forensic Sci Int Genet. 2022;60:102728. doi:10.1016/j.fsigen.2022.102728.
35. Duffy KR, Gurram N, Peters KC, et al. Exploring STR signal in the singleand multicopy number regimes: Deductions from an in silico model of the entire DNA laboratory process. Electrophoresis. 2017;38(6):855-68. doi:10.1002/elps.201600385.
36. Taylor D, Bright JA, McGoven C, et al. Validating multiplexes for use in conjunction with modern interpretation strategies. Forensic Sci Int Genet. 2016;20:6-19. doi:10.1016/j.fsigen.2015.09.011.
37. Purps J, Siegert S, Willuweit S, et al. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci Int Genet. 2014;12(100):12-23. doi:10.1016/j.fsigen.2014.04.008.
38. Zhou Y, Bo F, Tian T, et al. Excessive addition split peak formed by the non-templated nucleotide addition property of Taq DNA polymerase after PCR amplification. Front Bioeng Biotechnol. 2023;11:1180542. doi:10.3389/fbioe.2023.1180542.
39. Gorden EM, Sturk-Andreaggi K, Warnke-Sommer J, et al. Next generation sequencing of STR artifacts produced from historical bone samples. Forensic Sci Int Genet. 2020;49:102397. doi:10.1016/j.fsigen.2020.102397.
40. Song B, Fu J, Guo K. A Tibetan group from Ngawa Tibetan and Qiang Autonomous Prefecture, southwest China, is rich in genetic polymorphisms at 36 autosomal STR loci and shares a complex genetic structure with other Chinese populations. Heliyon. 2023;9(12):e23005. doi:10.1016/j.heliyon.2023.e23005.
41. Bottinelli M, Gouy A, Utz S, et al. Population genetic analysis of 12 X-chromosomal STRs in a Swiss sample. Int J Legal Med. 2022;136(2):561-3. doi:10.1007/s00414-021-02684-y.
42. Ashirbekov Y, Seidualy M, Abaildayev A, et al. Genetic polymorphism of Y-chromosome in Kazakh populations from Southern Kazakhstan. BMC Genomics. 2023;24(1):649. doi:10.1186/s12864-023-09753-z.
43. Lang Y, Guo F, Niu Q. StatsX v2.0: the interactive graphical soft-ware for population statistics on X-STR. Int J Legal Med. 2019; 133(1):39-44. doi:10.1007/s00414-018-1824-6.
44. Risinskaya NV, Kozhevnikova Ya, Kovaleva V, et al. Loss of heterozygosity in the short tandem repeat (STR) profile of tumor DNA in patients with de novo diagnosed acute lymphoblastic leukemia as a pattern of abnormal tumor karyotype. Cellular Therapy and Transplantation. 2020;9(3):22-3. (In Russ.) doi:10.18620/ctt-1866-8836-2020-9-3-1-152. EDN VSSEKO.
45. Kosobokova EN, Kalinina NA, Konoplina KM, et al. Human Metastatic Melanoma Cell Lines Panel for In Vitro and In Vivo Investigations. J Mol Pathol. 2024;5(1):11-27. doi:10.3390/jmp5010002.
46. Fan J, Zhang AP, Zheng ZZ, et al. A Case of Type 1 Triallelic Patterns at D5S818, D18S51, D6S1043, and FGA Demonstrated by Short Tandem Repeat Analysis. Int J Clin Pract. 2022;2022: 8600125. doi:10.1155/2022/8600125.
47. Gymrek M. A genomic view of short tandem repeats. Curr Opin Genet Dev. 2017;44:9-16. doi:10.1016/j.gde.2017.01.012.
48. Yang Q, Shen Y, Shao C, et al. Genetic analysis of tri-allelic patterns at the CODIS STR loci. Mol Genet Genomics. 2020;295(5): 1263-8. doi:10.1007/s00438-020-01701-w.
Supplementary files
What is already known about the subject?
- The short tandem repeat (STR) profiling is one of the simplest and most convenient methods for cell line authentication, but interpretation of the results can be complicated by analysis artifacts.
What might this study add?
- The work describes for the first time in Russian the common analysis artifacts discovered during the experimental work using the STR profiling, as well as the possible reasons for their occurrence. In addition, recommendations are given for reducing the influence of the mentioned artifacts on the analysis results.
Review
For citations:
Malchenkova A.A., Kosobokova E.N. Artifacts of analysis in cell line identification by short tandem repeat profiling. Cardiovascular Therapy and Prevention. 2024;23(11):4121. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4121. EDN: MNQAWT