Pharmacological potential in regression of left ventricular hypertrophy in hypertensive patients
https://doi.org/10.15829/1728-8800-2025-4161
EDN: NRGQDS
Abstract
Left ventricular hypertrophy (LVH), which is the main manifestation of hypertensive heart disease, is registered in 15-45% of patients with hypertension (HTN), reaching 77% in patients with resistant HTN, concomitant type 2 diabetes and a history of cardiovascular events. The presented review covers the main issues of definition, pathophysiology, epidemiology, diagnostics and regression of LVH with antihypertensive therapy. Recommendations, criteria for detection, advantages and disadvantages of electrocardiography and echocardiography in the management of patients with HTN and LVH are provided. Particular attention in the review is paid to the discussion of LVH influence on the cardiovascular prognosis and the validity of hypertrophy regression. LVH often occurs with the absence or erased clinical manifestations, but over time it increases the risk of heart failure, atrial fibrillation, coronary artery disease, sudden cardiac death, stroke and all-cause death. Timely and adequate antihypertensive therapy allows not only to reduce blood pressure, but also to achieve regression of LVH, which has a favorable effect on the outcome. The main groups of pharmacotherapy causing LVH regression are presented, among which renin-angiotensin-aldosterone system blockers (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, including in combination with a neprilysin inhibitor), β-blockers, calcium channel blockers, sodium-glucose cotransporter 2 inhibitors and diuretics are discussed in detail.
About the Authors
G. G. TaradinRussian Federation
Donetsk, Donetsk People's Republic
G. A. Ignatenko
Russian Federation
Donetsk, Donetsk People's Republic
I. V. Rakitskaya
Russian Federation
Donetsk, Donetsk People's Republic
O. M. Drapkina
Russian Federation
Moscow
References
1. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. 2022 Prevention of chronic non-communicable diseases in of the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022; 21(4):3235. (In Russ.) doi:10.15829/1728-8800-2022-3235.
2. Brouwers S, Sudano I, Kokubo Y, et al. Arterial hypertension. Lancet. 2021;398(10296):249-61. doi:10.1016/S0140-6736(21)00221-X.
3. Mills KT, Stefanescu A, He J.The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223-37. doi:10.1038/s41581-019-0244-2.
4. Nemtsova V, Vischer AS, Burkard T.Hypertensive heart disease: a narrative review series-part 1: pathophysiology and microstructural changes. J Clin Med. 2023;12(7):2606. doi:10.3390/jcm12072606.
5. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ.) doi:10.15829/1560-4071-2020-3-3786.
6. Ismail TF, Frey S, Kaufmann BA, et al. Hypertensive heart diseasethe imaging perspective. J Clin Med. 2023;12(9):3122. doi:10.3390/jcm12093122.
7. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304): 957-80. doi:10.1016/S0140-6736(21)01330-1.
8. Britov AN, Platonova EM, Eliseeva NA. Heart lesions in individuals with arterial hypertension of various risk levels: the possibility of diagnosis and treatment. Cardiosomatics. 2020;11(2):33-9. (In Russ.) doi:10.26442/22217185.2020.2.200228.
9. Masenga SK, Kirabo A.Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med. 2023;10: 1205475. doi:10.3389/fcvm.2023.1205475.
10. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22(2):11. doi:10.1007/s11906-020-1017-9.
11. Kadoglou NPE, Mouzarou A, Hadjigeorgiou N, et al. Challenges in echocardiography for the diagnosis and prognosis of nonischemic hypertensive heart disease. J Clin Med. 2024;13(9):2708. doi:10.3390/jcm13092708.
12. Dai H, Bragazzi NL, Younis A, et al. Worldwide trends in prevalence, mortality, and disability-adjusted life years for hypertensive heart disease from 1990 to 2017. Hypertension. 2021;77(4):1223-33. doi:10.1161/HYPERTENSIONAHA.120.16483.
13. Ovchinnikov A.G, Gvozdeva AD, Potekhina AV, et al. Potential of valsartan+sacubitril therapy in hypertensive heart disease. Russian Journal of Cardiology. 2021;26(7):4568. (In Russ.) doi:10.15829/1560-4071-2021-4568.
14. Bacharova L, Chevalier P, Gorenek B, et al. ISE/ISHNE Expert Consensus Statement on ECG diagnosis of left ventricular hypertrophy: the change of the paradigm. The joint paper of the International Society of Electrocardiology and the International Society for Holter Monitoring and Noninvasive Electrocardiology. J Electrocardiol. 2023;81:85-93. doi:10.1016/j.jelectrocard.2023.08.005.
15. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561-6. doi:10.1056/NEJM199005313222203.
16. Brooks JE, Soliman EZ, Upadhya B. Is left ventricular hypertrophy a valid therapeutic target? Curr Hypertens Rep. 2019;21(6):47. doi:10.1007/s11906-019-0952-9.
17. Kim HM, Hwang I-C, Choi H-M, et al. Prognostic implication of left ventricular hypertrophy regression after antihypertensive therapy in patients with hypertension. Front Cardiovasc Med. 2022;9:1082008. doi:10.3389/fcvm.2022.1082008.
18. Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2023;20(5):347-63. doi:10.1038/s41569-022-00806-6.
19. Cokkinos DV. Cardiac Hypertrophy. In: Cokkinos, D. (eds) Myocardial Preservation. Springer, Cham. 2019. Chap.5;63-86. doi:10.1007/978-3-319-98186-4_5.
20. Bourdillon MT, Vasan RS. A contemporary approach to hypertensive cardiomyopathy: reversing left ventricular hypertrophy. Curr Hypertens Rep. 2020;22(10):85. doi:10.1007/s11906-020-01092-8.
21. Jekell A, Nilsson PM, Kahan T.Treatment of hypertensive left ventricular hypertrophy. Curr Pharm Des. 2018;24(37):4391-6. doi:10.2174/1381612825666181203092918.
22. Song W, Zhang C, Tang J, et al. Hypersensitive C-reactive protein as a potential indicator for predicting left ventricular hypertrophy in elderly community-dwelling patients with hypertension. BMC Cardiovasc Disord. 2023;23(1):480. doi:10.1186/s12872-023-03509-z.
23. Pavlova OS, Yasiukaits NV, Barbuk OA, et al. Association of inflammatory and hematological indices with left ventricular hypertrophy in hypertensive patients. Arterial’naya Gipertenziya = Arterial Hypertension. 2024;30(1):108-20. (In Russ.) doi:10.18705/1607-419X-2024-2405.
24. Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43(12):2207-15. doi:10.1016/j.jacc.2003.11.064.
25. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277-314. doi:10.1016/j.echo.2016.01.011.
26. Semenkin AA, Druk IV, Potapov VV, et al. Hypertensive heart: from left ventricular hypertrophy to chronic heart failure. Arterial’nya Gipertenziya = Arterial Hypertension. 2023;29(2):138-49. (In Russ.) doi:10.18705/1607-419X-2023-29-2-138-149.
27. Lange A, Palka V, Bian C, et al. Left heart remodelling in hypertensive patients: a comprehensive echocardiography and computed tomography study. Front Cardiovasc Med. 2023;10:1295537. doi:10.3389/fcvm.2023.1295537.
28. Yildiz M, Oktay AA, Stewart MH, et al. Left ventricular hypertrophy and hypertension. Prog Cardiovasc Dis. 2020;63(1):10-21. doi:10.1016/j.pcad.2019.11.009.
29. Almeida RCM, Jorge AJL, Rosa MLG, et al. Left ventricular remodeling patterns in primary healthcare. Arq Bras Cardiol. 2020;114(1):59-65. doi:10.36660/abc.20180258.
30. Budzyń M, Gryszczyńka B, Boruczkowski M, et al. The potential role of circulating endothelial cells and endothelial progenitor cells in the prediction of left ventricular hypertrophy in hypertensive patients. Front Physiol. 2019;10:1005. doi:10.3389/fphys.2019.01005.
31. Tadic M, Cuspidi C. The effect of antihypertensive therapy on left ventricular longitudinal strain: missing part of the puzzle. J Cardiovasc Transl Res. 2021;14(1):125-8. doi:10.1007/s12265-020-09970-x.
32. Izmozherova NV, Popov AA, Bakhtin VM, et al. Clinical profile and drug therapy of outpatients with arterial hypertension. Rational Pharmacotherapy in Cardiology 2020;16(2):206-12. (In Russ.) doi:10.20996/1819-6446-2020-04-04.
33. Sun Z, Chen Z, Liu R, et al. Research progress on the efficacy and safety of spironolactone in reversing left ventricular hypertrophy in hemodialysis patients. Drug Des Devel Ther. 2023;17:181-90. doi:10.2147/DDDT.S393480.
34. Chu HW, Hwang IC, Kim HM, et al. Age-dependent implications of left ventricular hypertrophy regression in patients with hypertension. Hypertens Res. 2024;47(5):1144-56. doi:10.1038/s41440-023-01571-w.
35. Cuspidi C, Sala C, Negri F, et al. Italian Society of Hypertension. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26(6):343-9. doi:10.1038/jhh.2011.104.
36. Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41(12):1874-2071. doi:10.1097/HJH.0000000000003480.
37. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127-e248. doi:10.1016/j.jacc.2017.11.006.
38. de la Sierra A. New American and European hypertension guidelines, reconciling the differences. Cardiol Ther. 2019;8(2):157-66. doi:10.1007/s40119-019-0144-3.
39. Vasan RS, Song RJ, Xanthakis V, et al. Hypertension-mediated organ damage: prevalence, correlates, and prognosis in the community. Hypertension. 2022;79(3):505-15. doi:10.1161/HYPERTENSIONAHA.121.18502.
40. Tatavarthy M, Stathopoulos J, Oktay AA. Prevention and treatment of hypertensive left ventricular hypertrophy. Curr Opin Cardiol. 2024;39(4):251-8. doi:10.1097/HCO.0000000000001135.
41. Peguero JG, Lo Presti S, Perez J, et al. Electrocardiographic criteria for the diagnosis of left ventricular hypertrophy. J Am Coll Cardiol. 2017;69(13):1694-703. doi:10.1016/j.jacc.2017.01.037.
42. Faggiano A, Gherbesi E, Tadic M, et al. Do we need new electrocardiographic criteria for left ventricular hypertrophy? The case of the Peguero-Lo Presti criterion. A Narrative Review. Am J Hypertens. 2024;37(3):155-62. doi:10.1093/ajh/hpad117.
43. Bang CN, Soliman EZ, Simpson LM, et al.; ALLHAT Collaborative Research Group. Electrocardiographic left ventricular hypertrophy predicts cardiovascular morbidity and mortality in hypertensive patients: The ALLHAT Study. Am J Hypertens. 2017;30(9):914-22. doi:10.1093/ajh/hpx067.
44. Pedersen LR, Kristensen AMD, Petersen SS, et al. Prognostic implications of left ventricular hypertrophy diagnosed on electrocardiogram vs echocardiography. J Clin Hypertens (Greenwich). 2020;22(9):1647-58. doi:10.1111/jch.13991.
45. Zhang H, Hu L, Wei X.Prognostic value of left ventricular hypertrophy in hypertensive patients: a meta-analysis of electrocardiographic studies. J Clin Hypertens (Greenwich). 2020;22(2):254-60. doi:10.1111/jch.13795.
46. Bacharova L, Schocken D, Estes EH, et al. The role of ECG in the diagnosis of left ventricular hypertrophy. Curr Cardiol Rev. 2014;10(3):257-61. doi:10.2174/1573403x10666140514103220.
47. Barbieri A, Albini A, Maisano A, et al. Clinical value of complex echocardiographic left ventricular hypertrophy classification based on concentricity, mass, and volume quantification. Front Cardiovasc Med. 2021;8:667984. doi:10.3389/fcvm.2021.667984.
48. Moura B, Aimo A, Al-Mohammad A, et al. Diagnosis and management of patients with left ventricular hypertrophy: Role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2023;25(9):1493-506. doi:10.1002/ejhf.2997.
49. Cuspidi C, Gherbesi E, Tadic M. Left ventricular hypertrophy in hypertension: Is the electrocardiogram enough for risk stratification? J Clin Hypertens (Greenwich). 2023;25(1):115-6. doi:10.1111/jch.14614.
50. Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)†. Eur Heart J Cardiovasc Imaging. 2015;16(6):577-605. doi:10.1093/ehjci/jev076.
51. Muiesan ML, Paini A, Bertacchini F, et al. Regression under treatment of left ventricular hypertrophy and other structural alterations. In: Dorobantu M, Mancia G, Grassi G, Voicu V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. 2019. doi:10.1007/978-3-319-93320-7_19.
52. Bombelli M, Vanoli J, Cuspidi C, et al. Comparison of electrocardiographic versus echocardiographic detection of left ventricular mass changes over time and evaluation of new onset left ventricular hypertrophy. J Clin Hypertens (Greenwich). 2023;25(4):343-9. doi:10.1111/jch.14631.
53. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi:10.1016/j.echo.2014.10.003.
54. Bogomolov SN, Solntsev VN, Kulikov AN, et al. Ultrasound diagnostics of left ventricular hypertrophy: once more about the indexation of myocardial mass. Medical alphabet. 2023;(22):44- 9. (In Russ.) doi:10.33667/2078-5631-2023-22-44-49.
55. Cramariuc D, Gerdts E.Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther. 2016;14(8):915-26. doi:10.1080/14779072.2016.1186542.
56. Fan J, Wang H, Zhang Y, et al. Myocardial work alterations with progressive left ventricular hypertrophy in patients with hypertension. J Clin Hypertens (Greenwich). 2024;26(9):1045-53. doi:10.1111/jch.14855.
57. Milani RV, Lavie CJ, Mehra MR, et al. Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol. 2006;97(7):959-63. doi:10.1016/j.amjcard.2005.10.030.
58. Aro AL, Reinier K, Phan D, et al. Left-ventricular geometry and risk of sudden cardiac arrest in patients with preserved or moderately reduced left-ventricular ejection fraction. Europace. 2017;19(7):1146-52. doi:10.1093/europace/euw126.
59. Verdecchia P, Angeli F, Cavallini C, et al. Sudden cardiac death in hypertensive patients. Hypertension. 2019;73(5):1071-8. doi:10.1161/HYPERTENSIONAHA.119.12684.
60. Eskerud I, Gerdts E, Larsen TH, et al. Left ventricular hypertrophy contributes to Myocardial Ischemia in Non-obstructive Coronary Artery Disease (the MicroCAD study). Int J Cardiol. 2019;286:1-6. doi:10.1016/j.ijcard.2019.03.059.
61. Nepper-Christensen L, Lønborg J, Ahtarovski KA, et al. Left ventricular hypertrophy is associated with increased infarct size and decreased myocardial salvage in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. J Am Heart Assoc. 2017;6(1):e004823. doi:10.1161/JAHA.116.004823.
62. Mancusi C, Gerdts E, De Simone G, et al. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23(4):206-12. doi:10.3109/08037051.2013.858482.
63. Gerdts E, Okin PM, de Simone G, et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 2008;51(4):1109-14. doi:10.1161/HYPERTENSIONAHA.107.107474.
64. Ji H, Kim A, Ebinger JE, et al. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5(3):19-26. doi:10.1001/jamacardio.2019.5306.
65. Díez J, Butler J. Growing heart failure burden of hypertensive heart disease: a call to action. Hypertension. 2023;80(1):13-21. doi:10.1161/HYPERTENSIONAHA.122.19373.
66. Gerdts E, Izzo R, Mancusi C, et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol. 2018;258:257-61. doi:10.1016/j.ijcard.2017.12.086.
67. Sitkova ES, Mordovin VF, Ripp TM, et al. Gender differences in left ventricular hypertrophy regression after renal denervation in patients with resistant hypertension. The Siberian Medical J. 2019;34(4):128- 35. (In Russ.) doi:10.29001/2073-8552-2019-34-4-128-135.
68. Levy D, Salomon M, D'Agostino RB, et al. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90(4):1786-93. doi:10.1161/01.cir.90.4.1786.
69. Mathew J, Sleight P, Lonn E, et al. Heart Outcomes Prevention Evaluation (HOPE) Investigators. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104(14):1615-21. doi:10.1161/hc3901.096700.
70. Devereux RB, Dahlöf B, Gerdts E, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110(11):1456-62. doi:10.1161/01.CIR.0000141573.44737.5A.
71. Prineas RJ, Rautaharju PM, Grandits G, et al.; MRFIT Research Group. Independent risk for cardiovascular disease predicted by modified continuous score electrocardiographic criteria for 6-year incidence and regression of left ventricular hypertrophy among clinically disease-free men: 16-year follow-up for the multiple risk factor intervention trial. J Electrocardiol. 2001;34(2):91-101. doi:10.1054/jelc.2001.23360.
72. Zhang Z, Li L, Zhang Z, et al. Electrocardiographic tracking of left ventricular hypertrophy in hypertension: incidence and prognostic outcomes from the SPRINT trial. Clin Hypertens. 2024;30(1):17. doi:10.1186/s40885-024-00275-8.
73. Chen JS, Pei Y, Li CE, et al. Comparative efficacy of different types of antihypertensive drugs in reversing left ventricular hypertrophy as determined with echocardiography in hypertensive patients: A network meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2020;22(12):2175-83. doi:10.1111/jch.14047.
74. Deng Y, Liu W, Yang X, et al.; STEP Study Group. Intensive blood pressure lowering improves left ventricular hypertrophy in older patients with hypertension: the STEP trial. Hypertension. 2023;80(9):1834-42. doi:10.1161/HYPERTENSIONAHA.122.20732.
75. Fagard RH, Celis H, Thijs L, et al. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54(5):1084-91. doi:10.1161/HYPERTENSIONAHA.109.136655.
76. Lønnebakken MT, Izzo R, Mancusi C, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc. 2017;6(3):e004152. doi:10.1161/JAHA.116.004152.
77. Kawasoe S, Ohishi M. Regression of left ventricular hypertrophy. Hypertens Res. 2024;47(5):1225-6. doi:10.1038/s41440-024-01634-6.
78. Bang CN, Devereux RB, Okin PM. Regression of electrocardiographic left ventricular hypertrophy or strain is associated with lower incidence of cardiovascular morbidity and mortality in hypertensive patients independent of blood pressure reduction — A LIFE review. J Electrocardiol. 2014;47(5):630-5. doi:10.1016/j.jelectrocard.2014.07.003.
79. Ahmed SN, Jhaj R, Sadasivam B, et al. Regression of the left ventricular hypertrophy in patients with essential hypertension on standard drug therapy. Discoveries (Craiova). 2020;8(3):e115. doi:10.15190/d.2020.12.
80. Tai C, Gan T, Zou L, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on cardiovascular events in patients with heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2017;17(1):257. doi:10.1186/s12872-017-0686-z.
81. Gautam MP, Sedhain S, Gurung P, et al. Influence of antihypertensive drugs on left ventricular hypertrophy regression in hypertensive patients. JNHLS. 2023;2(2):81-6. doi:10.3126/jnhls.v2i2.60795.
82. Wong M, Staszewsky L, Latini R, et al. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure: Valsartan heart failure trial (Val-HeFT) echocardiographic data. J Am Coll Cardiol. 2004;43(11):2022-7. doi:10.1016/j.jacc.2003.12.053.
83. Karpov Yu A. The role of mineralocorticoid receptor antagonists in the treatment of cardiovascular diseases Atmosphere. Cardiology news. 2022;2:33-40. (In Russ.) doi:10.24412/2076-4189-2022-12703.
84. Gou WJ, Zhou FW, Providencia R, et al. Association of mineralocorticoid receptor antagonists with the mortality and cardiovascular effects in dialysis patients: a meta-analysis. Front Pharmacol. 2022;13:823530. doi:10.3389/fphar.2022.823530.
85. Yamamoto E, Usuku H, Sueta D, et al.; ESES-LVH investigators. Efficacy and safety of esaxerenone in hypertensive patients with left ventricular hypertrophy (ESES-LVH) study: a multicenter, openlabel, prospective, interventional study. Adv Ther. 2024;41(3):1284- 303. doi:10.1007/s12325-024-02780-6.
86. Wang Y, Zhou R, Lu C, et al. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J Am Heart Assoc. 2019;8(13):e012272. doi:10.1161/JAHA.119.012272.
87. Gvozdeva AD, Sobolevskaya MS, Sharf TV, et al. Influence of sacubitril/valsartan on exercise tolerance, left ventricular mass index and diastolic function in patients with HFpEF and left ventricular hypertrophy. Russian Cardiology Bulletin. 2023;18(3):67-75. (In Russ.) doi:10.17116/Cardiobulletin20231803167.
88. Hu N, Lv N, Chen Y.Treatment with sacubitril/valsartan effectively manages hypertension and ameliorates left ventricular hypertrophy in hemodialysis patients. Blood Purif. 2024:1-8. doi:10.1159/000538899.
89. Enzan N, Matsushima S, Ide T, et al. Beta-blockers are associated with reverse remodeling in patients with dilated cardiomyopathy and mid-range ejection fraction. Am Heart J Plus. 2021;11:100053. doi:10.1016/j.ahjo.2021.100053.
90. Colucci WS, Kolias TJ, Adams KF, et al; REVERT Study Group. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation. 2007;116(1): 49-56. doi:10.1161/CIRCULATIONAHA.106.666016.
91. Xing F, Chen J, Zhao B, et al. Real role of β-blockers in regression of left ventricular mass in hypertension patients: Bayesian network meta-analysis. Medicine (Baltimore). 2017;96(10):e6290. doi:10.1097/MD.0000000000006290.
92. Ostroumova ОD, Kochetkov АI, Lopukhina МV, et al. High sympathetic tone in development of the left ventricle hypertrophy and beta-blockers for regression. Russian Journal of Cardiology. 2018;(9):77-88. (In Russ.) doi:10.15829/1560-4071-2018-9-77-88.
93. Koracevic G, Stojanovic M, Lovic D, et al. Certain beta blockers (e.g., bisoprolol) may be reevaluated in hypertension guidelines for patients with left ventricular hypertrophy to diminish the ventricular arrhythmic risk. J Hum Hypertens. 2021;35(7):564-76. doi:10.1038/s41371-021-00505-8.
94. Gao Y, Zhou D, Yang P.Effect of amlodipine on ventricular hypertrophy in hypertension patients: a systematic review and metaanalysis. Ann Palliat Med. 2021;10(10):10768-78. doi:10.21037/apm-21-2455.
95. Salvatore T, Galiero R, Caturano A, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23(7):3651. doi:10.3390/ijms23073651.
96. Petunina NA, Kuzina IA, Telnova ME, et al. Pleiotropic effects of ipragliflozin. Clinical Discussion in General Med. 2023;4(4):20-6. (In Russ.) doi:10.47407/kr2023.4.4.00252.
97. Anker SD, Butler J, Filippatos G, et al.; EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451-61. doi:10.1056/NEJMoa2107038.
98. Wang Y, Zhong Y, Zhang Z, et al. Effect of sodium-glucose cotransporter protein-2 inhibitors on left ventricular hypertrophy in patients with type 2 diabetes: A systematic review and metaanalysis. Front Endocrinol (Lausanne). 2023;13:1088820. doi:10.3389/fendo.2022.1088820.
99. Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART cardiolink-6 randomized clinical trial. Circulation. 2019;140(21):1693-702. doi:10.1161/CIRCULATIONAHA.119.042375.
100. Brown AJM, Gandy S, McCrimmon R, et al. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J. 2020;41(36):3421-32. doi:10.1093/eurheartj/ehaa419.
101. Dihoum A, Brown AJ, McCrimmon RJ, et al. Dapagliflozin, inflammation and left ventricular remodelling in patients with type 2 diabetes and left ventricular hypertrophy. BMC Cardiovasc Disord. 2024;24(1):356. doi:10.1186/s12872-024-04022-7.
102. Paneni F, Costantino S, Hamdani N. Regression of left ventricular hypertrophy with SGLT2 inhibitors. Eur Heart J. 2020;41(36):3433-6. doi:10.1093/eurheartj/ehaa530.
103. Salvetti M, Paini A, Bertacchini F, et al. Changes in left ventricular geometry during antihypertensive treatment. Pharmacol Res. 2018;134:193-9. doi:10.1016/j.phrs.2018.06.026.
104. Liebson PR, Grandits GA, Dianzumba S, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1995;91(3):698-706. doi:10.1161/01.cir.91.3.698.
105. Ernst ME, Neaton JD, Grimm RH Jr, et al. Multiple Risk Factor Intervention Trial Research Group. Long-term effects of chlorthalidone versus hydrochlorothiazide on electrocardiographic left ventricular hypertrophy in the multiple risk factor intervention trial. Hypertension. 2011;58(6):1001-7. doi:10.1161/HYPERTENSIONAHA.111.181248.
106. Roush GC, Abdelfattah R, Song S, et al. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium-sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: A systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2018;20(10):1507-15. doi:10.1111/jch.13386.
107. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-17. doi:10.1093/eurheartj/ehz203.
108. Ovchinnikov A, Belyavskiy E, Potekhina A, et al. Asymptomatic left ventricular hypertrophy is a potent risk factor for the development of HFpEF but not HFrEF: results of a retrospective cohort study. J Clin Med. 2022;11(13):3885. doi:10.3390/jcm11133885.
109. Khan Z, Gul A, Mlawa G, et al. Statins as anti-hypertensive therapy: a systematic review and meta-analysis. Cureus. 2024;16(4):e57825. doi:10.7759/cureus.57825.
110. David-Neto E, Filho MPM, de Sá ÍJAS, et al. The impact of mTOR inhibitors in the regression of left ventricular hypertrophy in elderly kidney transplant recipients. Clin Transplant. 2022;36(8):e14742. doi:10.1111/ctr.14742.
Supplementary files
What is already known about the subject?
- Left ventricular hypertrophy (LVH) in hypertension increases the risk of heart failure, atrial fibrillation, sudden cardiac death, stroke and all-cause death.
- Regression of LVH during treatment of hypertension is associated with a favorable effect on cardiovascular prognosis.
What might this study add?
- The article presents current data on LVH regression during antihypertensive therapy, including new classes of drugs — angiotensin receptor/neprilysin inhibitors and sodium-glucose cotransporter 2 inhibitors.
Review
For citations:
Taradin G.G., Ignatenko G.A., Rakitskaya I.V., Drapkina O.M. Pharmacological potential in regression of left ventricular hypertrophy in hypertensive patients. Cardiovascular Therapy and Prevention. 2025;24(1):4161. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4161. EDN: NRGQDS