Preview

Cardiovascular Therapy and Prevention

Advanced search

Effect of plasma and serum storage conditions on circulating microRNA levels

https://doi.org/10.15829/1728-8800-2024-4180

EDN: KMPGLG

Abstract

Over the past decade, circulating small non-coding ribonucleic acid molecules (microRNAs) have demonstrated their potential as minimally invasive diagnostic and prognostic biomarkers of various diseases. Standardization of preanalytical and analytical factors, including collection, processing and storage of biosamples, plays a significant role in the reliability and reproducibility of circulating microRNA quantification. To date, there is no consensus regarding the data normalization used in the analysis of circulating microRNA expression. The review aim is to consider modern original papers on various storage conditions of biobanked plasma and serum samples with subsequent isolation of circulating microRNAs for analysis.

About the Authors

E. A. Sotnikova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. V. Kiseleva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Matias-Garcia PR, Wilson R, Mussack V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15: e0227648. doi:10.1371/journal.pone.0227648.

2. Brunet-Vega A, Pericay C, Quílez ME, et al. Variability in microRNA recovery from plasma: Comparison of five commercial kits. Anal Biochem. 2015;488: 28–35. doi:10.1016/j.ab.2015.07.018.

3. Chan S-F, Cheng H, Goh KK-R, Zou R. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn. 2023;25: 438–453. doi:10.1016/j.jmoldx.2023.03.005.

4. Khan J, Lieberman JA, Lockwood CM. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 2017;55: 608–621. doi:10.1515/cclm-2016-0471.

5. Markou AN, Lianidou ES. The impact of pre-analytical factors on the reliability of miRNA measurements. Curr Pathobiol Rep. 2019;7: 29–33. doi:10.1007/s40139-019-00191-9.

6. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15: 827–834. doi:10.1016/j.jmoldx.2013.07.005.

7. Wang K, Zhang S, Weber J, et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38: 7248–7259. doi:10.1093/nar/gkq601.

8. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9: 402. doi:10.3389/fendo.2018.00402.

9. Zhelankin AV, Iulmetova LN, Sharova EI. The Impact of the Anticoagulant Type in Blood Collection Tubes on Circulating Extracellular Plasma MicroRNA Profiles Revealed by Small RNA Sequencing. Int J Mol Sci. 2022;23. doi:10.3390/ijms231810340.

10. Faraldi M, Sansoni V, Perego S, et al. Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med . 2020;30: 010703. doi:10.11613/BM.2020.010703.

11. Kim SH, MacIntyre DA, Sykes L, et al. Whole blood holding time prior to plasma processing alters microRNA expression profile. Front Genet. 2021;12: 818334. doi:10.3389/fgene.2021.818334.

12. Binderup HG, Madsen JS, Heegaard NHH, et al. Quantification of microRNA levels in plasma - Impact of preanalytical and analytical conditions. PLoS One. 2018;13: e0201069. doi:10.1371/journal.pone.0201069.

13. McDonald JS, Milosevic D, Reddi HV, et al. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57: 833–840. doi:10.1373/clinchem.2010.157198.

14. Grasedieck S, Schöler N, Bommer M, et al. Impact of serum storage conditions on microRNA stability. Leukemia. 2012;26: 2414–2416. doi:10.1038/leu.2012.106.

15. McAlexander MA, Phillips MJ, Witwer KW. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet. 2013;4: 83. doi:10.3389/fgene.2013.00083.

16. Moret I, Sánchez-Izquierdo D, Iborra M, et al. Assessing an improved protocol for plasma microRNA extraction. PLoS One. 2013;8: e82753. doi:10.1371/journal.pone.0082753.

17. Page K, Guttery DS, Zahra N, et al. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One. 2013;8: e77963. doi:10.1371/journal.pone.0077963.

18. Monleau M, Bonnel S, Gostan T, et al. Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics. 2014;15: 395. doi:10.1186/1471-2164-15-395.

19. Zhao H, Shen J, Hu Q, et al. Effects of preanalytic variables on circulating microRNAs in whole blood. Cancer Epidemiol Biomarkers Prev. 2014;23: 2643–2648. doi:10.1158/1055-9965.EPI-14-0550.

20. Balzano F, Deiana M, Dei Giudici S, et al. miRNA Stability in Frozen Plasma Samples. Molecules. 2015;20: 19030–19040. doi:10.3390/molecules201019030.

21. Tan GW, Khoo ASB, Tan LP. Evaluation of extraction kits and RT-qPCR systems adapted to high-throughput platform for circulating miRNAs. Sci Rep. 2015;5: 9430. doi:10.1038/srep09430.

22. Glinge C, Clauss S, Boddum K, et al. Stability of circulating blood-based MicroRNAs - pre-analytic methodological considerations. PLoS One. 2017;12: e0167969. doi:10.1371/journal.pone.0167969.

23. Muth DC, Powell BH, Zhao Z, Witwer KW. miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes. 2018;11: 273. doi:10.1186/s13104-018-3378-6.

24. Wong RKY, MacMahon M, Woodside JV, Simpson DA. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 2019;20: 446. doi:10.1186/s12864-019-5826-7.

25. Kupec T, Bleilevens A, Iborra S, et al. Stability of circulating microRNAs in serum. PLoS One. 2022;17: e0268958. doi:10.1371/journal.pone.0268958.

26. Suzuki K, Yamaguchi T, Kohda M, et al. Establishment of preanalytical conditions for microRNA profile analysis of clinical plasma samples. PLoS One. 2022;17: e0278927. doi:10.1371/journal.pone.0278927.

27. Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8: e64795. doi:10.1371/journal.pone.0064795.

28. Binderup HG, Houlind K, Madsen JS, Brasen CL. Pre-storage centrifugation conditions have significant impact on measured microRNA levels in biobanked EDTA plasma samples. Biochem Biophys Rep. 2016;7: 195–200. doi:10.1016/j.bbrep.2016.06.005.

29. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25: 402–408. doi:10.1006/meth.2001.1262.

30. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105: 10513–10518. doi:10.1073/pnas.0804549105.

31. Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat Med. 2014;33: 1946–1978. doi:10.1002/sim.6082.


Supplementary files

What is already known about the subject?

  • MicroRNAs (small non-coding ribonucleic acid molecules) are involved in post-transcriptional regulation of gene expression and affect various pathological conditions.
  • Standardization of preanalytical variables is a critical step in clinical implementation as well as in research of circulating microRNAs.

What might this study add?

  • Maximum stability of microRNA is achieved by storing serum and plasma at -80оC while minimizing the number of freeze-thaw cycles.

Review

For citations:


Sotnikova E.A., Kiseleva A.V., Meshkov A.N. Effect of plasma and serum storage conditions on circulating microRNA levels. Cardiovascular Therapy and Prevention. 2024;23(11):4180. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4180. EDN: KMPGLG

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)