Preview

Cardiovascular Therapy and Prevention

Advanced search

MYBPC3-associated cardiomyopathy: features of the course and prospects for specific therapy

https://doi.org/10.15829/1728-8800-2024-4257

EDN: FJXOAI

Abstract

Genetic cardiomyopathies (CMP) are a group of diseases characterized by myocardial pathology not caused by hypertension, coronary artery disease, congenital and acquired defects. Development of imaging methods and molecular genetic diagnostics showed that the traditional phenotypic classification does not fully meet modern needs due to the presence of clinical, morphological and genotypic "crossing" of CMP. At the same time, in recent years, data have been obtained showing that the genetic substrate has a significantly higher prognostic value compared to the phenotype and plays a significant role in risk stratification and the choice of patient management tactics, as well as in family screening. Taken together, this has led to a shift in focus from phenotypic features to genotype as the basis for modern classifications of cardiomyopathy. One example of such a genotype-specific approach is the identification of cardiomyopathy associated with MYBPC3 gene variants as an independent entity. The aim of the article was to describe the role of MYBPC3 gene and the cardiac myosin-binding protein C encoded by it in cardiomyocyte function, to present current literature data on pathogenesis, clinical features and developing strategies for MYBPC3cardiomyopathy treatment, as well as to highlight current problems and directions for future research in this area.

About the Authors

D. A. Nefedova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



R. P. Myasnikov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. V. Kulikova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Miles C, Fanton Z, Tome M, et al. Inherited cardiomyopathies. BMJ. 2019;365:l1570. doi:10.1136/bmj.l1570.

2. Hassoun R, Budde H, Mügge A, et al. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci. 2021;22(20):11154. doi:10.3390/ijms222011154.

3. Wang Y, Jia H, Song J. Accurate Classification of Non-ischemic Cardiomyopathy. Curr Cardiol Rep. 2023;25(10):1299-317. doi:10.1007/s11886-023-01944-0.

4. Myasnikov RP, Kuzina NN, Nefedova DA, et al. Desmoplakin and features of desmoplakin cardiomyopathy. Russian Journal of Cardiology. 2023;28(11):5648. (In Russ.) doi:10.15829/1560-4071-2023-5648.

5. McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies. Nat Rev Cardiol. 2021;18(1):22-36. doi:10.1038/s41569-020-0428-2.

6. Paldino A, Dal Ferro M, Stolfo D, et al. Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies. J Am Coll Cardiol. 2022;80(21):1981-94. doi:10.1016/j.jacc.2022.08.804.

7. Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023; 44(37):3503-626. doi:10.1093/eurheartj/ehad194.

8. Tudurachi BS, Zăvoi A, Leonte A, et al. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int J Mol Sci. 2023;24(13):10510. doi:10.3390/ijms241310510.

9. Glazier AA, Thompson A, Day SM. Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy. Pflugers Arch. 2019;471(5):781-93. doi:10.1007/s00424-018-2226-9.

10. Nie J, Han Y, Jin Z, et al. Homology-directed repair of an MYBPC3 gene mutation in a rat model of hypertrophic cardiomyopathy. Gene Ther. 2023;30(6):520-7. doi:10.1038/s41434-023-00384-3.

11. Ingles J, Goldstein J, Thaxton C, et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ Genom Precis Med. 2019;12(2):e002460. doi:10.1161/CIRCGEN.119.002460.

12. Carrier L, Bonne G, Bährend E, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997;80(3):427-34. doi:10.1161/01.res.0000435859.24609.b3.

13. Helms AS, Thompson AD, Glazier AA, et al. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients With Hypertrophic Cardiomyopathy. Circ Genom Precis Med. 2020;13(5):396-405. doi:10.1161/CIRCGEN.120.002929.

14. Helms AS, Tang VT, O'Leary TS, et al. Effects of MYBPC3 loss-offunction mutations preceding hypertrophic cardiomyopathy. JCI Insight. 2020;5(2):e133782. doi:10.1172/jci.insight.133782.

15. Marian AJ. Molecular Genetic Basis of Hypertrophic Cardiomyopathy. Circ Res. 2021;128(10):1533-53. doi:10.1161/CIRCRESAHA.121.318346.

16. Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol. 2021;150:101-8. doi:10.1016/j.yjmcc.2020.10.003.

17. Sheridan C. Genetic medicines aim straight for the heart. Nat Biotechnol. 2023;41(4):435-7. doi:10.1038/s41587-023-01745-4.

18. Toepfer CN, Wakimoto H, Garfinkel AC, et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med. 2019;11(476):eaat1199. doi:10.1126/scitranslmed.aat1199.

19. Myasnikov RP, Kulikova AV, Meshkov AN, et al. The combination of left ventricular non-compaction and hypertrophic cardiomyopathy in one family with a pathogenic variant in the MYBPC3 gene (rs397516037). Russian Journal of Cardiology. 2020;25(10): 4115. (In Russ.) doi:10.15829/1560-4071-2020-4115.

20. Thompson AD, Helms AS, Kannan A, et al. Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genet Med. 2021;23(7):1281-7. doi:10.1038/s41436-021-01134-9.

21. Zou X, Ouyang H, Lin F, et al. MYBPC3 deficiency in cardiac fibroblasts drives their activation and contributes to fibrosis. Cell Death Dis. 2022;13(11):948. doi:10.1038/s41419-022-05403-6.

22. Jansen M, Schmidt AF, Jans JJM, et al. Circulating Acylcarnitines Associated with Hypertrophic Cardiomyopathy Severity: an Exploratory Cross-Sectional Study in MYBPC3 Founder Variant Carriers. J Cardiovasc Transl Res. 2023;16(6):1267-75. doi:10.1007/s12265-023-10398-2.

23. Maron BJ, Desai MY, Nishimura RA, et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-theArt Review. J Am Coll Cardiol. 2022;79(4):372-89. doi:10.1016/j.jacc.2021.12.002.

24. Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. J Cardiovasc Aging. 2024;4(1):9. doi:10.20517/jca.2023.29.

25. Rodríguez Junquera M, Salgado M, González-Urbistondo F, et al. Different Phenotypes in Monozygotic Twins, Carriers of the Same Pathogenic Variant for Hypertrophic Cardiomyopathy. Life (Basel). 2022;12(9):1346. doi:10.3390/life12091346.

26. Gao J, Collyer J, Wang M, et al. Genetic Dissection of Hypertrophic Cardiomyopathy with Myocardial RNA-Seq. Int J Mol Sci. 2020;21(9):3040. doi:10.3390/ijms21093040.

27. Adalsteinsdottir B, Burke M, Maron BJ, et al. Hypertrophic cardiomyopathy in myosin-binding protein C (MYBPC3) Icelandic founder mutation carriers. Open Heart. 2020;7(1):e001220. doi:10.1136/openhrt-2019-001220.

28. Field E, Norrish G, Acquaah V, et al. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet. 2022;59(8):768-75. doi:10.1136/jmedgenet-2021-107774.

29. Jansen M, Schuldt M, van Driel BO, et al. Untargeted Metabolomics Identifies Potential Hypertrophic Cardiomyopathy Biomarkers in Carriers of MYBPC3 Founder Variants. Int J Mol Sci. 2023;24(4):4031. doi:10.3390/ijms24044031.

30. Beltrami M, Fedele E, Fumagalli C, et al. Long-Term Prevalence of Systolic Dysfunction in MYBPC3 Versus MYH7­Related Hypertrophic Cardiomyopathy. Circ Genom Precis Med. 2023; 16(4):363-71. doi:10.1161/CIRCGEN.122.003832.

31. Park J, Packard EA, Levin MG, et al. A genome-first approach to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank. Hum Mol Genet. 2022;31(5):827-37. doi:10.1093/hmg/ddab249.

32. Velicki L, Jakovljevic DG, Preveden A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovasc Disord. 2020;20(1):516. doi:10.1186/s12872-020-01807-4.

33. Burnasheva GA, Myasnikov RP, Kulikova OV, et al. Prognostic value of morphological, biochemical, molecular markers of fibrosis in patients with hypertrophic cardiomyopathy. Cardiovascular Therapy and Prevention. 2023;22(12):3839. (In Russ.) doi:10.15829/1728-8800-2023-3839.

34. Watkins H, Conner D, Thierfelder L, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434-7. doi:10.1038/ng1295-434.

35. Jordan E, Peterson L, Ai T, et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation. 2021;144(1):7-19. doi:10.1161/CIRCULATIONAHA.120.053033.

36. Park J, Lee JM, Cho JS. Phenotypic Diversity of Cardiomyopathy Caused by an MYBPC3 Frameshift Mutation in a Korean Family: A Case Report. Medicina (Kaunas). 2021;57(3):281. doi:10.3390/medicina57030281.

37. Zhou N, Weng H, Zhao W, et al. Gene-echocardiography: refining genotype-phenotype correlations in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2023;25(1):127-35. doi:10.1093/ehjci/jead200.

38. Miller RJH, Heidary S, Pavlovic A, et al. Defining genotype-phenotype relationships in patients with hypertrophic cardiomyopathy using cardiovascular magnetic resonance imaging. PLoS One. 2019;14(6):e0217612. doi:10.1371/journal.pone.0217612.

39. De Frutos F, Ochoa JP, Fernández AI, et al. Late gadolinium enhancement distribution patterns in non-ischaemic dilated cardiomyopathy: genotype-phenotype correlation. Eur Heart J Cardiovasc Imaging. 2023;25(1):75-85. doi:10.1093/ehjci/jead184.

40. Mori AA, Castro LR, Bortolin RH, et al. Association of variants in MYH7, MYBPC3 and TNNT2 with sudden cardiac death-related risk factors in Brazilian patients with hypertrophic cardiomyopathy. Forensic Sci Int Genet. 2021;52:102478. doi:10.1016/j.fsigen.2021.102478.

41. Robyns T, Breckpot J, Nuyens D, et al. Clinical and ECG variables to predict the outcome of genetic testing in hypertrophic cardiomyopathy. Eur J Med Genet. 2020;63(3):103754. doi:10.1016/j.ejmg.2019.103754.

42. Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebocontrolled, phase 3 trial. Lancet. 2020;396(10253):759-69. doi:10.1016/S0140-6736(20)31792-X.

43. Desai MY, Owens A, Wolski K, et al. Mavacamten in Patients With Hypertrophic Cardiomyopathy Referred for Septal Reduction: Week 56 Results From the VALOR-HCM Randomized Clinical Trial. JAMA Cardiol. 2023;8(10):968-77. doi:10.1001/jamacardio.2023.3342.

44. Pioner JM, Vitale G, Steczina S, et al. Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human MYBPC3 HCM. Circ Res. 2023;132(5):628-44. doi:10.1161/CIRCRESAHA.122.321956.

45. Ommen SR, Ho CY, Asif IM, et al. 2024 AHA/ACC/AMSSM/HRS/ PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/ American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2024;83(23):2324-405. doi:10.1016/j.jacc.2024.02.014.

46. Masri A, Sherrid MV, Abraham TP, et al. Efficacy and Safety of Aficamten in Symptomatic Nonobstructive Hypertrophic Cardiomyopathy: Results From the REDWOOD-HCM Trial, Cohort 4. J Card Fail. 2024:S1071-9164(24)00082-4. doi:10.1016/j.cardfail.2024.02.020.


Supplementary files

What is already known about the subject?

  • Pathogenic and likely pathogenic variants of the MYBPC3 gene are the main cause of hypertrophic car­dio­myopathy (CMP) (~50% of cases), and can also underlie the development of other cardiac pheno­types.
  • The identification of MYBPC3-associated CMP as a separate entity is one example of a modern ge­no­type-­specific approach to the classification of he­re­ditary myocardial pathology. However, to date, aspects of managing such patients remain ambi­guous.

What might this study add?

  • The article presents an overview of current lite­rature data on the etiology and pathogenesis, clini­cal features and promising treatment strategies for MYBPC3-associated cardiomyopathy.
  • The need for a personalized genotype-­specific approach to risk stratification, prognosis deter­mi­na­tion and choice of management tactics for pa­tients with MYBPC3-associated cardiomyo­pathy is emphasized, especially given the developing direction of gene therapy for the disease.

Review

For citations:


Nefedova D.A., Myasnikov R.P., Kulikova O.V., Drapkina O.M. MYBPC3-associated cardiomyopathy: features of the course and prospects for specific therapy. Cardiovascular Therapy and Prevention. 2024;23(12):4257. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4257. EDN: FJXOAI

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)