Phenome-wide association studies as a research tool for identifying new pathogenetic links
https://doi.org/10.15829/1728-8800-2024-4275
EDN: XMWWLS
Abstract
The accumulation of biospecimens associated with large-scale clinical data (data from electronic medical records, epidemiological and other large-scale studies) has made it possible to conduct studies aimed at studying associations between genetic variants and phenotypes, in particular, phenome-wide association studies (PheWAS). It was originally designed to test one or more genetic variants associated with a disease or clinical symptom for associations with other phenotypes. PheWAS can identify novel genetic and phenotypic associations, differentiate true pleiotropy and clinical comorbidity, identify new disease subtypes, and identify new drug targets. Future efforts to integrate broad and robust phenotypic data collection and improve PheWAS tools will provide a valuable resource for more efficient genome-phenome analysis, leading to new discoveries in personalized medicine.
About the Authors
N. A. MashkinaRussian Federation
Moscow
A. I. Ershova
Russian Federation
Moscow
O. V. Kopylova
Russian Federation
Moscow
O. M. Drapkina
Russian Federation
Moscow
References
1. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26(9):1205-10. doi:10.1093/BIOINFORMATICS/BTQ126.
2. Denny JC, Bastarache L, Roden DM. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine. Annu Rev Genomics Hum Genet. 2016;17(1):353-73. doi:10.1146/annurevgenom-090314-024956.
3. Liu TY, Liao WL, Wang TY, et al. Genome-wide association study of hyperthyroidism based on electronic medical record from Taiwan. Front Med. 2022;9. doi:10.3389/fmed.2022.830621.
4. Liu S, Crawford DC. Maturation and application of phenomewide association studies. Trends Genet. 2022;38(4):353-63. doi:10.1016/j.tig.2021.12.002.
5. Wang L, Zhang X, Meng X, et al. Methodology in phenomewide association studies: a systematic review. J Med Genet. 2021;58(11):720-8. doi:10.1136/jmedgenet-2021-107696.
6. Roden DM. Phenome‐wide association studies: a new method for functional genomics in humans. J Physiol. 2017;595(12):4109-15. doi:10.1113/JP273122.
7. Verma A, Verma SS, Pendergrass SA, et al. eMERGE PhenomeWide Association Study (PheWAS) identifies clinical associations and pleiotropy for stop-gain variants. BMC Med Genomics. 2016; 9(S1):32. doi:10.1186/s12920-016-0191-8.
8. Wu P, Gifford A, Meng X, et al. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation. JMIR Med Informatics. 2019;7(4):e14325. doi:10.2196/14325.
9. Passero K, He X, Zhou J, et al. Phenome-wide association studies on cardiovascular health and fatty acids considering phenotype quality control practices for epidemiological data. Pac Symp Biocomput. 2020;25:659-70.
10. Verma A, Bradford Y, Dudek S, et al. A simulation study investigating power estimates in phenome-wide association studies. BMC Bioinformatics. 2018;19(1):120. doi:10.1186/s12859-018-2135-0.
11. Bastarache L, Denny JC, Roden DM. Phenome-Wide Association Studies. JAMA. 2022;327(1):75. doi:10.1001/jama.2021.20356.
12. Hebbring SJ. The challenges, advantages and future of phenomewide association studies. Immunology. 2014;141(2):157-65. doi:10.1111/imm.12195.
13. Pendergrass SA, Brown-Gentry K, Dudek S, et al. Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. Gibson G, ed. PLoS Genet. 2013;9(1):e1003087. doi:10.1371/journal.pgen.1003087.
14. Evangelou E, Ioannidis JPA. Meta-analysis methods for genomewide association studies and beyond. Nat Rev Genet. 2013; 14(6):379-89. doi:10.1038/nrg3472.
15. Simonti CN, Vernot B, Bastarache L, et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science. 2016;351(6274):737-41. doi:10.1126/science.aad2149.
16. Thériault S, Dina C, Messika-Zeitoun D, et al. Genetic Association Analyses Highlight IL6, ALPL, and NAV1 As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. Circ Genomic Precis Med. 2019;12(10):e002617. doi:10.1161/CIRCGEN.119.002617.
17. Leppert B, Millard LAC, Riglin L, et al. A cross-disorder PRSpheWAS of 5 major psychiatric disorders in UK Biobank. Zhu X, ed. PLOS Genet. 2020;16(5):e1008185. doi:10.1371/journal.pgen.1008185.
18. Plotnikov DY. Mendelian randomization: using genetic information in epidemiological studies (review). Research Results in Biomedicine. 2023;9(2):158-72. (In Russ.) doi:10.18413/2658-6533-2023-9-2-0-1.
19. Reay WR, Kiltschewskij DJ, Di Biase MA, et al. Genetic influences on circulating retinol and its relationship to human health. Nat Commun. 2024;15(1):1490. doi:10.1038/s41467-024-45779-x.
20. Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. eBioMedicine. 2020;59:102954. doi:10.1016/j.ebiom.2020.102954.
21. Namjou B, Marsolo K, Caroll RJ, et al. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to Eosinophilic Esophagitis. Front Genet. 2014;5. doi:10.3389/fgene.2014.00401.
22. Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102-11. doi:10.1038/nbt.2749.
23. Li X, Meng X, He Y, et al. Genetically determined serum urate levels and cardiovascular and other diseases in UK Biobank cohort: A phenome-wide mendelian randomization study. Rahimi K, ed. PLOS Med. 2019;16(10):e1002937. doi:10.1371/journal.pmed.1002937.
24. Zheutlin AB, Dennis J, Karlsson Linnér R, et al. Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems. Am J Psychiatry. 2019;176(10):846-55. doi:10.1176/appi.ajp.2019.18091085.
25. Safarova MS, Satterfield BA, Fan X, et al. A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. NPJ Genomic Med. 2019;4(1):3. doi:10.1038/s41525019-0078-7.
26. Nam Y, Jung SH, Yun JS, et al. Discovering comorbid diseases using an inter-disease interactivity network based on biobankscale PheWAS data. Wren J, ed. Bioinformatics. 2023;39(1). doi:10.1093/bioinformatics/btac822.
27. Prinzbach A, Moosavinasab S, Rust S, et al. Comorbidities in Childhood Celiac Disease. J Pediatr Gastroenterol Nutr. 2018; 67(4):488-93. doi:10.1097/MPG.0000000000002020.
28. Chen SY, Chen YC, Liu TY, et al. Novel Genes Associated With Atrial Fibrillation and the Predictive Models for AF Incorporating Polygenic Risk Score and PheWAS-Derived Risk Factors. Can J Cardiol. 2024;40(11):2117-27. doi:10.1016/j.cjca.2024.07.029.
29. Larsson SC, Wang L, Li X, Jiang F, Chen X, Mantzoros CS. Circulating lipoprotein(a) levels and health outcomes: Phenomewide Mendelian randomization and disease-trajectory analyses. Metabolism. 2022;137:155347. doi:10.1016/j.metabol.2022.155347.
30. Liu J, de Vries PS, Del Greco MF, et al. A multi-omics study of circulating phospholipid markers of blood pressure. Sci Rep. 2022;12(1):574. doi:10.1038/s41598-021-04446-7.
31. Millwood IY, Bennett DA, Walters RG, et al. A phenome-wide association study of a lipoprotein-associated phospholipase A 2 loss-of-function variant in 90 000 Chinese adults. Int J Epidemiol. 2016;45(5):1588-99. doi:10.1093/ije/dyw087.
32. Meng X, Li X, Timofeeva MN, et al. Phenome-wide Mendelianrandomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. Int J Epidemiol. 2019;48(5):1425-34. doi:10.1093/ije/dyz182.
33. Jerome RN, Joly MM, Kennedy N, et al. Leveraging Human Genetics to Identify Safety Signals Prior to Drug Marketing Approval and Clinical Use. Drug Saf. 2020;43(6):567-82. doi:10.1007/s40264-020-00915-6.
34. Diogo D, Tian C, Franklin CS, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9(1):4285. doi:10.1038/s41467018-06540-3.
35. Jerome RN, Pulley JM, Roden DM, et al. Using Human "Experiments of Nature" to Predict Drug Safety Issues: An Example with PCSK9 Inhibitors. Drug Saf. 2018;41(3):303-11. doi:10.1007/s40264-017-0616-0.
Supplementary files
What is already known about the subject?
- Phenome-wide association studies (PheWAS) have become an established and actively developing approach to identify associations between genetic sequence variants and a wide range of phenotypic traits.
- Today, PheWAS is considered one of the most valuable methodological approaches in studying pathogenetic relationships.
What might this study add?
- The methodology and main stages of conducting phenome-wide association studies are presented.
- There are following scientific and practical problems that can be solved using PheWAS: replication of previously identified associations; identification of new genotype-phenotype associations and pleiotropy of nucleotide sequence variants; study of new pathogenetic relationships and comorbidity; search for new approaches to treatment and prevention; study of drug safety.
Review
For citations:
Mashkina N.A., Ershova A.I., Kopylova O.V., Drapkina O.M. Phenome-wide association studies as a research tool for identifying new pathogenetic links. Cardiovascular Therapy and Prevention. 2024;23(12):4275. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4275. EDN: XMWWLS