Preview

Cardiovascular Therapy and Prevention

Advanced search

COVID-19 incidence after vaccination with different types of vaccines against SARS-CoV-2

https://doi.org/10.15829/1728-8800-2024-4286

EDN: JVSBSJ

Abstract

Until now, there remains a certain interest in studying the role of booster vaccination  in  the  formation  of  post-vaccination  immunity  against  the Severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2).  The variety  of  vaccine  platforms  provides  the  opportunity  to  choose  them for the population and healthcare workers, and also allows taking into account the individual characteristics of each patient.

Aim. To  estimate  the  incidence  of  coronavirus  disease  2019 (COVID-19) as a result of using one type of vaccine and heterologous vaccines during primary and repeated vaccination against the SARSCoV2 based on prospective follow-up data.

Materialandmethods. The study was conducted within the prospective SATURN registry,  which  included  individuals  who  received  various subjects  had  acute  respiratory  viral  infection.  Within  six  months after  the  introduction  of  the  full  revaccination  regimen  (after  visit  4), coronavirus infection was detected in one participant from group I and one participant from group III. During the subsequent follow-up period, 14  people  had  SARS-CoV-2  infection  as  follows:  group  I  —  5,  group II  —  4,  group  III  —  5  people  (p>0,05).  Correlation  analysis  revealed that  parameters  of  cellular  and  humoral  immunity  in  all  three  groups of  vaccinated  individuals  revealed  the  relationship  between  the  level of  anti- SARS-CoV-2  S-glycopeptide  IgG  and  the  number  of  active  T cells responding to stimulation with surface and nuclear antigens were without significant differences.

Conclusion. It is worth noting that the use of a homologous regimen vaccination  and  revaccination  regimens  against  the  SARS-CoV-2 (Gam- COVID-Vac at both stages) and a heterologous regimen (Gam- virus  (homo-  and  heterologous  regimens)  based  on  a  combination of  two  vaccines:  Gam- COVID-Vac  and  CoviVac.  Depending  on  the chosen  regimen,  3  following  groups  were  formed:  group  I  (n=106)  — participants  with  a  homologous  regimen  (Gam- COVID-Vac)  at  each stage of vaccination and revaccination; Group II (n=54) — participants with  a  heterologous  regimen  of  sequential  administration  of  Gam- COVID-Vac  and  CoviVac  at  the  vaccination  and  revaccination  stage; Group III (n=40) — particiants with a homologous regimen (CoviVac) at the vaccination and revaccination stage. At the first visit, all participants underwent medical history collection, examination, and identification of potential contraindications to vaccination. At each subsequent visit, the level  ofanti- SARS-CoV-2  S-glycoprotein  immunoglobulin  (Ig)  G  was additionally determined. At visits 1, 3, and 5, the activity of specifically sensitized T-lymphocytes to the surface and nuclear antigen of SARSCoV-2 was  assessed.  IgG  concentration  was  determined  using  the Abbott Architect SARS-CoV-2 IgG reagent kit, while T-cell immunity was assessed  using  the  T Spot.COVID  test  system  (Oxford  Immunotec). Visit 1 corresponded to stage 1 of primary vaccination; visit 2 — stage 2  of  primary  vaccination;  visit  3  (12  months  after  visit  1)  —  stage  1  of revaccination; visit 4 (21 days after visit 3) — stage 2 of revaccination; visit 5 — 18 months after primary vaccination; visit 6 — 24 months after primary vaccination. 

Results. The study included 200 vaccinated participants with a mean  age  of  46,5±13,9  years,  including  99  (49,5%)  men,  101  (50,5%) COVID Vac  and  CoviVac)  demonstrated  effectiveness  in  relation  to resistance  to  coronavirus  infection  and  the  formation  of  a  relatively stable level of both humoral and cellular immunity for 18 and 24 months after primary vaccination and subsequent revaccination.

About the Authors

O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



S. A. Berns
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. G. Chashсhin
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



A. Yu. Gorshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. V. Zhdanova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



L. N. Ryzhakova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



O. A. Litinskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



M. S. Pokrovskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow



References

1. Isiutina-Fedotkova TS, Zhernov YV, Makarova VV, et al. Hygienic aspects of anti COVID-19 measures. Health Risk Analysis. 2023;8:171-83. (In Russ.). doi:10.21668/health.risk/2023.1.16.

2. Yermalovich MA, Kolodkina VL, Samoilovich EO, et al. Postinfectious and Postvaccinal Humoral Immune Response to SARS-CoV-2 in Adults: Qualitative and Quantitative Assessment. Epidemiology and Vaccinal Prevention. 2023;22(3):50-6. (In Russ.) doi:10.31631/2073-3046-2023-22-3-50-56.

3. Barouch DH. Covid-19 Vaccines — Immunity, Variants, Boosters. N Engl J Med. 2022;387:1011-20. doi:10.1056/nejmra2206573.

4. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Gam-COVIDVac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. doi:10.1016/S01406736(21)00234-8. Erratum in: Lancet. 2021;397(10275):670.

5. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586(7830):516-27. doi:10.1038/s41586-020-2798-3.

6. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020; 396(10255):887-97. doi:10.1016/S0140-6736(20)31866-3.

7. König M, Torgauten HM, Tran TT, et al. Immunogenicity and Safety of a Third SARS-CoV-2 Vaccine Dose in Patients with Multiple Sclerosis and Weak Immune Response after COVID-19 Vaccination. JAMA Neurol. 2022;79:307-9. doi:10.1001/jamaneurol.2021.5109.

8. Drapkina OM, Berns SA, Gorshkov AYu, et al. Comparative assessment of the immunogenicity of various revaccination regimens against the SARS-CoV-2. Cardiovascular Therapy and Prevention. 2022;21(12):3483. (In Russ.) doi:10.15829/1728-8800-2022-3483. EDN XMCZAE.

9. Drapkina OM, Berns SA, Gorshkov AYu, et al. Booster vaccination against SARS-CoV-2: current challenges and solutions. Complex Issues of Cardiovascular Diseases. 2022;11(2):196-203. (In Russ.) doi:10.17802/2306-1278-2022-11-2-196-203.

10. Abdelmoneim SA, Sallam M, Hafez DM, et al. COVID-19 Vaccine Booster Dose Acceptance: Systematic Review and Meta-Analysis. Trop Med Infect Dis. 2022;7:46-71. doi:10.3390/tropicalmed7100298.

11. Kudlay D, Svistunov A, Satyshev O. COVID-19 Vaccines: An Updated Overview of Different Platforms. Bioengineering. 2022;9:1-17. doi:10.3390/bioengineering9110714.

12. Drapkina OM, Chashchin MG, Berns SA, et al. Analysis of the humoral and cell-mediated immune response in heterologous and homologous SARS-CoV-2 revaccination. Cardiovascular Therapy and Prevention. 2023;22(10):3764. (In Russ.) Драпкина О. М., doi:10.15829/1728-8800-2023-3764. EDN RMYFDH.

13. Díaz-Dinamarca DA, Díaz P, Barra G, et al. Humoral immunity against SARS-CoV-2 evoked by heterologous vaccination groups using the CoronaVac (Sinovac) and BNT162b2 (Pfizer/BioNTech) vaccines in Chile. Front Public Heal. 2023;11. doi:10.3389/fpubh.2023.1229045.


Supplementary files

What is already known about the subject?

  • Primary vaccination and revaccination against co­ro­navirus disease 2019 (COVID-19) make it pos­sible to form complex immediate and mid-term periods.
  • The use of different types of vaccines during sub­sequent revaccination can contribute to more stable complex immunity.

What might this study add?

  • The use of homologous and heterologous revac­cination regimens against COVID-19 is effective in preventing COVID-19 and contributes to stable level of both humoral and cellular immunity for 24 months.

Review

For citations:


Drapkina O.M., Berns S.A., Chashсhin M.G., Gorshkov A.Yu., Zhdanova O.V., Ryzhakova L.N., Litinskaya O.A., Pokrovskaya M.S. COVID-19 incidence after vaccination with different types of vaccines against SARS-CoV-2. Cardiovascular Therapy and Prevention. 2024;23(12):4286. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4286. EDN: JVSBSJ

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)