Potential and prospects for using biomedical resource collections obtained from pediatric patients for clinics and research
https://doi.org/10.15829/1728-8800-2025-4567
EDN: SILFWO
Abstract
Aim. To demonstrate the development and potential applications of biomedical resource collections of pediatric patient biomaterials, as well as the potential for their differentiated use for clinical and research purposes in a multidisciplinary hospital setting at a federal research center.
Material and methods. The study included biomaterial from pediatric patients and their first-degree relatives, banked between 2016 and 2025 as part of research projects at the Almazov National Medical Research Center in the field of clinical genetics and pediatrics. Deoxyribonucleic acid (DNA) isolated from whole blood samples and dried blood spots was used for genetic testing using modern molecular genetic diagnostic methods.
Results. The potential of using bioresource collections of pediatric patient biomaterial was demonstrated using familial cases of rare monogenic diseases, for which previously collected biomaterial from the biobank was used to establish a diagnosis and determine follow-up strategies for family members, identify risks to future offspring, and receive advance data on the management of patients with specific hereditary syndromes. Additionally, the ability to predict new phenotypes associated with a known gene, and conversely, to uncover the relationship of new genes with a known phenotype, was demonstrated using examples of familial diseases, where biobank biomaterial enabled segregation analysis. Using biomaterial from cohorts of patients with a specific pathology, the potential for developing novel diagnostic algorithms and laboratory test systems, a differentiated approach to selecting a targeted genetic panel for diagnosis, and the identification of new clinical and genetic disease features was showed. A founder mutation was showed to be identified in a pathology determined in a specific ethnic group, with the potential to describe the onset time and geographic distribution.
Conclusion. The creation of bioresource collections obtained from pediatric populations is a complex, yet extremely important, clinically necessary, and promising scientific task. Its implementation facilitates translational research aimed at improving diagnostic methods, understanding the pathogenesis and progression of childhood diseases, and the influence of environmental factors on their development. It also facilitates the search for new genetic causes of hereditary pathologies and the description of new phenotypes associated with known genes. It also identifies predictors of disease severity and prognosis. In the long term, it facilitates the search for novel therapeutic approaches and understanding the disease pathogenesis in adults.
About the Authors
O. V. MelnikRussian Federation
Akkuratova str., 2, St. Petersburg, 197341
A. M. Zlotina
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
S. G. Fetisova
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
Yu. V. Fomicheva
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
P. S. Sokolnikova
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
A. A. Kolesov
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
T. L. Vershinina
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
E. S. Vasichkina
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
A. A. Kostareva
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
A. O. Konradi
Russian Federation
Akkuratova str., 2, St. Petersburg, 197341
References
1. Kaufmann P, Pariser AR, Austin C. From scientific discovery to treatments for rare diseases — the view from the National Center for Advancing Translational Sciences — Office of Rare Diseases Research. Orphanet J Rare Dis. 2018;13(1):196. doi:10.1186/s13023-018-0936-x.
2. Cannovo N, Guarino R, Fedeli P. Ethical and deontological aspects of pediatric biobanks: the situation in Italy. Cell Tissue Bank. 2020;21(3):469-77. doi:10.1007/s10561-020-09833-4.
3. Prince S, Then SN, O'Grady KA. Determining the state of guidance on pediatric biobanking for researchers, HRECS, and families: Regulatory mapping of international guidance. Eur J Pediatr. 2024;183(5):2477-90. doi:10.1007/s00431-024-05469-8.
4. Tarling TE, Goldenberg A, Ellis A, et al. Ethical Challenges for Pediatric Biobanks. Biopreserv Biobank. 2021;19(2):101-5. doi:10.1089/bio.2020.0116.
5. Hens K, Cassiman J-J, Nys H, et al. Children, biobanks and the scope of parental consent. Eur J Hum Genet. 2011;19(7):735-9. doi:10.1038/ejhg.2011.29.
6. Hartsock JA, Schwartz PH, Waltz AC, et al. Anticipatory Waivers of Consent for Pediatric Biobanking. Ethics Hum Res. 2019;41(2):14-21. doi:10.1002/eahr.500008.
7. Kasperbauer TJ, Halverson C. Adolescent Assent and Reconsent for Biobanking: Recent Developments and Emerging Ethical Issues. Front Med (Lausanne). 2021;8:686264. doi:10.3389/fmed.2021.686264.
8. van der Velden FJS, Lim E, Gills L, et al. Biobanking and consenting to research: a qualitative thematic analysis of young people's perspectives in the North East of England. BMC Med Ethics. 2023;24(1):47. doi:10.1186/s12910-023-00925-w.
9. Holm S. Informed consent and the bio-banking of material from children. Genomics Soc Policy. 2005;1:16-26. doi:10.1186/1746-5354-1-1-1.
10. Henderson GE, Cadigan RJ, Edwards TP, et al. Characterizing biobank organizations in the U.S.: results from a national survey. Genome Med. 2013;5(1):3. doi:10.1186/gm407.
11. Melnik ОV, Loevets ТS, Vershinina ТL, et al. Barth syndrome in practice of cardiology. Russian Journal of Cardiology. 2018;(3):54-9. (In Russ.). Мельник О. В., Лоевец Т. С., Вершинина Т. Л. и др. Синдром Барта в практике кардиолога. Российский кардиологический журнал. 2018;(3):54-9. doi:10.15829/1560-4071-2018-3-54-59.
12. Kiselev A, Mikhaylov E, Parmon E, et al. Progressive cardiac conduction disease associated with a DSP gene mutation. Int J Cardiol. 2016;216:188-9. doi:10.1016/j.ijcard.2016.04.164.
13. Khudiakov A, Perepelina K, Klauzen P, et al. Generation of two iPSC lines (FAMRCi004-A and FAMRCi004-B) from patient with familial progressive cardiac conduction disorder carrying genetic variant DSP p.His1684Arg. Stem Cell Res. 2020;43:101720. doi:10.1016/j.scr.2020.101720.
14. Gusev K, Khudiakov A, Zaytseva A, Perepelina K, et al. Impact of the DSP-H1684R Genetic Variant on Ion Channels Activity in iPSC-Derived Cardiomyocytes. Cell Physiol Biochem. 2020;54(4):696-706. doi:10.33594/000000249.
15. Pervunina T, Vershinina T, Kiselev A, et al. Neonatal hypertrophic cardiomyopathy caused by double mutation in RAS pathway genes. Int J Cardiol. 2015;184:272-3. doi:10.1016/j.ijcard.2015.02.029.
16. Norrish G, Kolt G, Cervi E, et al. Clinical presentation and long-term outcomes of infantile hypertrophic cardiomyopathy: a European multicentre study. ESC Heart Fail. 2021;8(6):5057-67. doi:10.1002/ehf2.13573.
17. Stegeman R, Paauw ND, de Graaf R, et al. The etiology of cardiac hypertrophy in infants. Sci Rep. 2021;11(1):10626. doi:10.1038/s41598-021-90128-3.
18. Marston NA, Han L, Olivotto I, et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J. 2021;42(20):1988-96. doi:10.1093/eurheartj/ehab148.
19. Fetisova S, Melnik O, Vasichkina E, et al. The clinical and genetic spectrum of pediatric hypertrophic cardiomyopathy manifesting before one year of age. Pediatr Res. 2025;98(4):1301-12. doi:10.1038/s41390-025-03989-z.
20. Fetisova SG, Melnik OV, Fomicheva YV, et al. Comparative informativeness of various targeted panels in the genetic diagnosis of hypertrophic cardiomyopathy in children. Translational Medicine. 2025;12(1):6-14. (In Russ.) doi:10.18705/2311-4495-2025-12-1-6-14.
21. Bokeria LA, Shlyakhto EV, Gabrusenko SA, et al. 2025 Clinical practice guidelines for Hypertrophic cardiomyopathy. Russian Journal of Cardiology. 2025;30(5):6387. (In Russ.) doi:10.15829/1560-4071-2025-6387. EDN: BUUCJT.
22. Zlotina A, Barashkova S, Zhuk S, et al. Characterization of pathogenic genetic variants in Russian patients with primary ciliary dyskinesia using gene panel sequencing and transcript analysis. Orphanet J Rare Dis. 2024;19(1):310. doi:10.1186/s13023-024-03318-3.
23. Chesnikova AI, Sitnikova MYu, Ageev FT, et al. Dilated cardiomyopathy. Guidelines 2025. Russian Journal of Cardiology. 2026;31(-):6672. Ahead of print. (In Russ.) doi:10.15829/1560-4071-2026-6672. EDN: DBDNKD. В печати.
24. Tuazon AMA, Lott P, Bohórquez M, et al. Haplotype analysis of the internationally distributed BRCA1 c.3331_3334delCAAG founder mutation reveals a common ancestral origin in Iberia. Breast Cancer Res. 2020;22(1):108. doi:10.1186/s13058-020-01341-3.
Supplementary files
Review
For citations:
Melnik O.V., Zlotina A.M., Fetisova S.G., Fomicheva Yu.V., Sokolnikova P.S., Kolesov A.A., Vershinina T.L., Vasichkina E.S., Kostareva A.A., Konradi A.O. Potential and prospects for using biomedical resource collections obtained from pediatric patients for clinics and research. Cardiovascular Therapy and Prevention. 2025;24(11):4567. (In Russ.) https://doi.org/10.15829/1728-8800-2025-4567. EDN: SILFWO
JATS XML

















































