Preview

Cardiovascular Therapy and Prevention

Advanced search

AGE-RELATED CHANGES IN HEART RATE VARIABILITY AND THEIR RELATION WITH LEUCOCYTE TELOMERE LENGTH

https://doi.org/10.15829/1728-8800-2017-1-54-60

Abstract

Aim. To assess the  relation of age-depended changes  in heart  rate variability (HRV) with telomere  length.  With the  age,  even  with no cardiovascular  diseases (CVD), there  is a decline of HRV which is an indicator of vegetative system condition. The probable  mechanism  for age-related decrease  in HRV might be  cellular ageing.  One  of the markers of cellular ageing is telomere length regarded  as a marker of biological age.

Material and methods. Totally, 229 persons of age 23-91 y.o. included, with no clinical signs of cardiovascular diseases. All participants underwent the HRV analysis by the data of Holter ECG monitoring and of short ECG recordings supine and upright position by 5 minutes. Telomere length was assessed in leucocytes on genomic desoxyribonucleic acid (DNA) with plymeraze chain reaction  real time. The participants  were selected  to two groups: <60 y.o. and ≥60 y.o. Comparative analysis was done,  of the  parameters  studied,  in two age  groups,  correlational analysis  of telomere  length  with HRV, linear regression  analysis  and multiple regression.

Results. In the group of the older, telomere length was higher than in the  younger  — 9,90±0,47  units vs 9,65±0,43  units (p<0,001)  with close correlation of telomere length with the age (r=-0,32, p<0,05). By the data  of linear regression,  telomere  length is closely related with the mean value of standard deviations of all selected  RR intervals for every 5 minutes of 24-hour recording (SDANN), with the power of high-frequency spectrum  (HF), relation of lowerand high-frequency waves (L/H) (β=0,36,  p=0,006; β=0,39,  p=0,004; β=-0,32,  р=0,02, resp.). In older persons, in the group of shorter telomeres there were significantly lower values of mean standard  deviations for all selected R-R-intervals (SDNN) (111  (94;  126)  ms  vs 122  (112;  122)  ms), mean-square differences  between  the  duratons  of the  next  sinus intervals RR (RMSSD) R-R (RMSSD) — 16 (11; 22) ms vs 22 (17; 25) ms), power of the very low frequency spectrum  components  (VLF) — 1176 (718; 1453) ms2   vs 1476 (850; 1763) ms2)  by the  data  from Holter ECG, than in the group of longer telomeres (p<0,05). Differences by the shorter  recordings  supine  and  upright were not significant.

Conclusion. Telomere length is related to the age-relevant HRV changes. Telomere  length  might  be  an  early  predictor  of the  ageassociated weakening of autonomous  regulation of heart  functioning and reflect real biological age of vegetative nervous system irrelevant to other cardiovascular risk factors.

About the Authors

L. I. Streltsova
National Research Center for Preventive Medicine
Russian Federation


О. N. Tkacheva
National Research Center for Preventive Medicine; Russian Center for Gerontology
Russian Federation


E. V. Plokhova
National Research Center for Preventive Medicine; Russian Center for Gerontology
Russian Federation


D. U. Akasheva
National Research Center for Preventive Medicine
Russian Federation


I. D. Strajesko
National Research Center for Preventive Medicine
Russian Federation


E. N. Dudinskaya
National Research Center for Preventive Medicine; Russian Center for Gerontology
Russian Federation


S. А. Boytsov
National Research Center for Preventive Medicine
Russian Federation


References

1. Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014; 5: 756.

2. Baevsky RM. Evaluation of adaptive capacity of the organism and the risk of disease. Moscow, Medioine Publ. 1997; 265 р. Russian (Баевский Р. М. Оценка адаптационных возможностей организма и риск развития заболеваний. М.: Медицина 1997; 265 с).

3. Korkushko OV, Pisaruk AV, Lishnevskaya VY Age and pathological changes of daily heart rate variability. Vestnik aritmologii 1999; 14: 30-3. Russian (Коркушко О. В., Писарук А. В., Лишневская В. И. Возрастные и патологические изменения суточной вариабельности сердечного ритма. Вестник аритмологии 1999; 14: 30-3).

4. Kishkun AA. Age and pathological changes of daily heart rate variability. M.: GEOTAR-Media 2008; 529-533 р. Russian (Кишкун А. А. Биологический возраст и старение: возможности определения и пути коррекции. Руководство для врачей. М.: ГЭОТАР-Медиа 2008; 529-33 с).

5. Kurjanova EV. Autonomic regulation of the heart rate: results and prospects of research: monograph / Kurjanova EV. 2nd ed., rev. and add. Astrakhan: The publishing house "Astrakhan University" 2011; 139 р. Russian (Курьянова Е. В. Вегетативная регуляция сердечного ритма: результаты и перспективы исследований: монография. Е. В. Курьянова. 2-е изд., испр. И доп. Астрахань: Издательский дом "Астраханский университет" 2011: 139 с).

6. Mikhelson VM, Gamaley IA. Telomere shortening is a sole mechanism of aging in mammals. Curr Aging Sci 2012; 5(3): 203-8.

7. Plohova EV, Akasheva DU, Tkacheva ON, et al. Age-related remodeling of the left ventricle: is there a connection to the cellular aging? Cardiovascular Therapy and 60 Prevention 2015; 14(2): 52-7. Russian (Плохова Е. В., Акашева Д. У., Ткачева О. Н. и др. Возрастное ремоделирование миокарда левого желудочка: есть ли связь с клеточным старением? Кардиоваскулярная терапия и профилактика 2015; 14 (2): 52-7).

8. Ryabykina GV, Sobolev AV. Holter monitoring of ECG with the analysis of heart rate variability. Moscow, MEDPRAKTIKA-M Publ. 2005: 224 р. Russian (Рябыкина Г. В., Соболев А. В. Мониторирование ЭКГ с анализом вариабельности ритма сердца. М.: "Медпрактика — М" 2005: 224 с).

9. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 253: 585-621

10. Eitan E, Hutchison ER, Mattson MP. Telomere Shortening in Neurological Disorders: An Abundance of Unanswered Questions. Trends Neurosci 2014; 37(5): 256-63.

11. Terai Mi, Izumiyama-Shimomura N, Aida J, et al. Association of telomere shortening in myocardium with heart weight gain and cause of death. Scientific Reports, 2013; 3: 2401, p.1-8.

12. Rolyan H, Scheffold A, Heinrich A, et al. Telomere shortening reduces Alzheimer's disease amyloid pathology in mice. Brain 2011; 134 (Pt 7): 2044-56.

13. Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003; 22: 131-9.

14. Argita Zalli, Carvalho LA, JueLin, et al. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl AcadSci U S A 2014; 111(12): 4519-24.

15. Kroenke C, Epel E, Adler N, et al. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosom Med 2011; 73(7): 533-40.


Review

For citations:


Streltsova L.I., Tkacheva О.N., Plokhova E.V., Akasheva D.U., Strajesko I.D., Dudinskaya E.N., Boytsov S.А. AGE-RELATED CHANGES IN HEART RATE VARIABILITY AND THEIR RELATION WITH LEUCOCYTE TELOMERE LENGTH. Cardiovascular Therapy and Prevention. 2017;16(1):54-60. (In Russ.) https://doi.org/10.15829/1728-8800-2017-1-54-60

Views: 3394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)