Hemorheological system in coronary heart disease patients: prognostic value
Abstract
Aim. To develop highly sensitive prognostic methods for coronary heart disease (CHD) and acute coronary event (ACE) risk stratification, on the basis of biophysical hemorheological system assessment.
Material and methods. Seven-year follow-up data on CHD patients were analyzed: re-hospitalization rate and reasons; main hemorheological parameters, their temporal and velocity characteristics; hemorheological system modeling by creating phase fragments in multi-dimensional phase space.
Results. Whole blood viscosity was significantly higher in patients with 3 or more ACE, comparing to ACE-free individuals or participants with <3 ACE. Velocity parameter dynamics correlated with ACE hospitalization rate. Phase fragment method demonstrated hemorheological system destabilization, maximal in patients with 3 or more ACE.
Conclusion. Prognostic value of whole blood viscosity and velocity assessment was demonstrated in CHD patients. Various CHD therapy algorithms, depending on hemorheological parameters and ACE risk, were developed.
About the Authors
L. I. MalinovaRussian Federation
P. Yu. Dovgalevsky
Russian Federation
References
1. Ройтман Е.В., Фирсов Н.Н., Дементьева М.Г. и др. Термины, понятия и подходы к исследованиям реологии крови в клинике. Тромбоз, гемостаз и реология 2000; 3: 5-12.
2. Bing RJ, Hellberg K. Coronary Blood Flow in Relation to Angina Pectoris. Circulation 1972; 46: 1146-54.
3. Добровольский Н.А., Лопухин Ю.М., Парфенов А.С., Пешков А.В. Анализатор вязкости крови. Реологические исследования в медицине. Москва 1997; 56-9.
4. Реброва О.Ю. Статистический анализ медицинских данных. Москва «Медиа Сфера» 2006; 305 с.
5. Денисова Т.П., Головачева Т.В., Брук С.Б. и др. Биофизические аспекты системы гемостаза при инфаркте миокарда. Саратов: Изд-во СМУ 2003; 160 с.
6. Левтов В.А., Регирер С.А., Шадрина Н.Х. Реология крови. Москва «Медицина» 1982; 272 с.
7. Sutton DW, Schmid-Schonbein GW. Elevation of organ resistance due to leukocyte perfusion. Am J Physiol 1992; 262: H1646- 50.
8. Санников А.Г., Бродер И.А., Сторожок С.А. Влияние модификаций экстрацеллюлярной среды различными концентрациями CaCl2 на механические свойства мембраны и метаболизм эритроцитов. Науч вестн Тюмен ГУ 2000; 2: 64-75.
9. Dai G, Kaazempur-Mofrad MR, Zhang SNY, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. PNAS 2004; 101: 14871-6.
10. Engstrom G, Hedblad B, Stavenow L, et al. Fatality of Future Coronary Events Is Related to Inflammation-Sensitive Plasma Proteins: A Population-Based Prospective Cohort Study. Circulation 2004; 110: 27-31.
11. Fuller GM, Otto JM, Wolowsky BM, et al. The effects of hepatocyte stimulating factor on fibrinogen biosyntesis in hepatocytes biolayers. J Cell Biol 1985; 101: 1481-6.
12. Junker R, Heinrich J, Ulbrich H, et al. Relationship between plasma viscosity and the severity of coronary heart disease. Arterioscler Thromb Vasc Biol 1998; 18: 870-5.
13. Chen S, Gavish B, Zhang S, et al. Monitoring of erythrocyte aggregate morphology under flow by computerized image analysis. Biorheology 1995; 32: 487-96.
14. Панченко Е.П., Добровольский А.Б. Тромбозы в кардиологии. Механизмы развития и возможности терапии. Москва «Спорт и культура» 1999; 464 с.
15. Волькенштейн М.В. Биофизика. Москва «Наука» 1988; 591 с.
Review
For citations:
Malinova L.I., Dovgalevsky P.Yu. Hemorheological system in coronary heart disease patients: prognostic value. Cardiovascular Therapy and Prevention. 2007;6(3):19-24. (In Russ.)