Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

МИКРОБИОТА КИШЕЧНИКА И ФАКТОРЫ КАРДИОВАСКУЛЯРНОГО РИСКА. ЧАСТЬ 2. МИКРОБИОТА КИШЕЧНИКА И ОЖИРЕНИЕ

https://doi.org/10.15829/1728-8800-2015-5-83-86

Полный текст:

Аннотация

Значение жировой ткани для организма оказалось намного больше, чем предполагали ранее. Жировая ткань представляет собой обширный эндокринный орган, значение которого трудно переоце­нить, его работа влияет на развитие метаболических нарушений, кардиоваскулярной патологии. В последнее время активно изуча­ется связь ожирения и состава кишечной микробиоты. Состав микробиоты различается в зависимости от характера питания, физической активности, помимо того сама микробиота может вли­ять на усвоение питательных веществ, проницаемость кишечной стенки, на аппетит человека. В представленной статье приведены некоторые механизмы взаимосвязи микробиоты кишечника и ожи­рения, результаты исследований последних лет. 

Об авторах

Д. А. Каштанова
ФГБУ "Государственный научно-исследовательский центр профилактической медицины" Минздрава России. Москва, Россия
Россия

аспирант отдела изучения процессов старения и профилактики возраст-ассоциированных заболеваний



О. Н. Ткачева
ФГБУ "Государственный научно-исследовательский центр профилактической медицины" Минздрава России. Москва, Россия
Россия
д. м.н., профессор, руководитель отдела, заместитель директора по научной и лечебной работе


С. А. Бойцов
ФГБУ "Государственный научно-исследовательский центр профилактической медицины" Минздрава России. Москва, Россия
Россия
д. м.н., профессор, директор


Список литературы

1. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization 2014; 280 p.

2. Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev 2013; 14(3): 232-44.

3. de Rooij SR, Nijpels G, Nilsson PM, et al. Relationship Between Insulin S., Cardiovascular Disease I. Low-grade chronic inflammation in the relationship between insulin sensitivity and cardiovascular disease (RISC) population: associations with insulin resistance and cardiometabolic risk profile. Diabetes Care 2009; 32(7): 1295-301.

4. Bahceci M, Gokalp D, Bahceci S, et al. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest 2007; 30(3): 210-4.

5. Marques-Vidal P, Bochud M, Bastardot F, et al. Association between inflammatory and obesity markers in a Swiss population-based sample (CoLaus Study). Obes Facts 2012; 5(5): 734-44.

6. Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010; 5(8): e12191.

7. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004; 101(44): 15718-23.

8. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.

9. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374-83.

10. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761-72.

11. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.

12. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and

13. lean twins. Nature 2009; 457(7228): 480-4.

14. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190-5.

15. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008; 32(11): 1720-4.

16. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin

17. Nutr 2011; 94(1): 58-65.

18. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight- loss diets promote metabolite profiles likely to be detrimental to colonic health. Am

19. J Clin Nutr 2011; 93(5): 1062-72.

20. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.

21. de La Serre CB, Ellis CL, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am

22. J Physiol Gastrointest Liver Physiol 2010; 299(2): G440-8.

23. Drago S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand

24. J Gastroenterol 2006; 41(4): 408-19.

25. Moreno-Navarrete JM, Sabater M, Ortega F, et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012; 7(5): e37160.

26. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91(1): 151-75.

27. Ewaschuk JB, Diaz H, Meddings L, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295(5): G1025-34.

28. Литература

29. Shen TY Qin HL, Gao ZG, et al. Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World J Gastroenterol 2006; 12(27): 4352-8.

30. Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007; 2(12): e1308.

31. Anderson RC, Cookson AL, McNabb WC, et al. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 2010; 309(2): 184-92.

32. Lamprecht M, Bogner S, Schippinger G, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr 2012; 9(1): 45.

33. Harris K, Kassis A, Major G, et al. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012; 2012. http://www.hindawi.com/ journals/jobe/2012/879151/

34. Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 2009; 50(1): 90-7.

35. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57(6): 1470-81.

36. Xiong Y Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 2004; 101(4): 1045-50.

37. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013;4:1829.

38. Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 2008; 100(2): 297-305.

39. Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco- 2 cell monolayer model of intestinal barrier. Pediatr Res 2007; 61(1): 37-41.

40. Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008: 72(2): 572-6.

41. Queipo-Ortuno MI, Seoane LM, Murri M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 2013; 8(5): e65465.

42. Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46(6): 261-74.

43. Ravussin Y, Koren O, Spor A, et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 2012; 20(4): 738-47.

44. Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 2012; 107(4): 601-13.

45. Angelakis E, Million M, Kankoe S, et al. Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxychloroquine treatment. Antimicrob Agents Chemother 2014;58(6): 3342-7.

46. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62(8): 1112-21.

47. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60(11): 2775-86.

48. Takemura N, Okubo T, Sonoyama K. Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood) 2010; 235(7): 849-56.

49. Wang J, Tang H, Zhang C, et al. Modulation of gut microbiota during probiotic- mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 2015; 9(1): 1-15.

50. Kadooka Y, Sato M, Imaizumi K, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010; 64(6): 636-43.

51. Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, et al. Probiotic as a novel treatment strategy against liver disease. Hepat Mon 2013; 13(2): e7521.


Для цитирования:


Каштанова Д.А., Ткачева О.Н., Бойцов С.А. МИКРОБИОТА КИШЕЧНИКА И ФАКТОРЫ КАРДИОВАСКУЛЯРНОГО РИСКА. ЧАСТЬ 2. МИКРОБИОТА КИШЕЧНИКА И ОЖИРЕНИЕ. Кардиоваскулярная терапия и профилактика. 2015;14(5):83-86. https://doi.org/10.15829/1728-8800-2015-5-83-86

For citation:


Kashtanova D.A., Tkacheva O.N., Boytsov S.A. GUT MICROBIOTA AND CARDIOVASCULAR RISK FACTORS. PART 2. GUT MICROBIOTA AND OBESITY. Cardiovascular Therapy and Prevention. 2015;14(5):83-86. (In Russ.) https://doi.org/10.15829/1728-8800-2015-5-83-86

Просмотров: 300


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)