Preview

Кардиоваскулярная терапия и профилактика

Расширенный поиск

Роль кавеол и кавеолинов в норме и патологии

Аннотация

Открытые более 50 лет назад, кавеолы долгое время оставались загадочными плазмолеммными органеллами. Их описывали в виде обнаруживаемых при электронной микроскопии 50-100 нм инвагинации плазматической мембраны. Позже были открыты белки, названные кавеолинами, которые являются обязательным структурным компонентом мембран кавеол. С этого времени в многочисленных исследованиях была продемонстрирована их важная роль в различных функциях клетки, включая процессы эндоцитоза, гомеостаза липидов, сигнальную трансдукцию и онкосуппрессию. Выведение кавеолиндефицитных мышей позволило анализировать функции кавеол и кавеолинов в отношении физиологии человека. Действительно, накапливаются доказательства вовлечения кавеолинов в патогенез заболеваний человека, включая рак, мышечные дистрофии и сахарный диабет 2 типа. В обзоре описана роль кавеолинов в норме и патологии

Об авторах

Р. И. Воробьев
Алтайский государственный медицинский университет, г. Барнаул
Россия


Г. И. Шумахер
Алтайский государственный медицинский университет, г. Барнаул
Россия


М. А. Хорева
Алтайский государственный медицинский университет, г. Барнаул
Россия


И. В. Осипова
Алтайский государственный медицинский университет, г. Барнаул
Россия


Ю. В. Кореновский
Алтайский государственный медицинский университет, г. Барнаул
Россия


Список литературы

1. Scherer PE, Lisanti MP, Baldini G, et al. (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 1994; 127: 1233-43.

2. Razani B, Woodman SE, Lisanti MP. Caveolae: From Cell Biology to Animal Physiology. Pharmacol Rev 2002; 54: 431-67.

3. Cohen AW, Hnasko R, SchubertW, Lisanti MP. Role of Caveolae and Caveolins in Health and Disease. Physiol Rev 2004; 84: 1341-79.

4. Gil J. Number and distribution of plasmalemmal vesicles in the lung. Fed Proc 1983; 42: 2414-8.

5. Cameron PL, Ruffin JW, Bollag R, et al. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17: 9520-35.

6. Tang ZL, Scherer PE, Okamoto T, et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271: 2255-61.

7. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science (Wash DC) 2001; 293: 2449-52.

8. Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable, but show evidence of hyper-proliferative and vascular abnormalities. J Biol Chem 2001; 276: 38121-38.

9. Razani B, Wang XB, Engelman JA, et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22: 2329-44.

10. Scherer PE, Okamoto T, Chun M, et al. Identification, sequence and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93: 131-5.

11. Kurzchalia T, Dupree P, Parton RG, et al. VIP 21, A 21-kD membrane protein is an integral component of trans-Golginetwork-derived transport vesicles. J Cell Biol 1992; 118: 1003-14.

12. Sargiacomo M, Scherer PE, Tang ZL, et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995; 92: 9407-11.

13. Mora R, Bonilha VL, Marmorstein A, et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae and rafts when co-expressed with caveolin-1. J Biol Chem 1999; 274: 25708-17.

14. Das K, Lewis RY, Scherer PE, et al. The membrane spanning domains of caveolins 1 and 2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem 1999; 274: 18721-8.

15. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science (Wash DC) 2001; 293: 2449-52.

16. GhitescuL, FixmanA, SimonescuM, etal. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986; 102: 1304-11.

17. Simionescu N, Simionescu M, and Palade GE. Permeability of muscle capillaries to small heme-peptides: evidence for the existence of patent transendothelial channels. J Cell Biol 1975; 64: 586-607.

18. Schubert W, Frank PG, Razani B, et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 2001; 276: 48619-22.

19. Frank PG, Lee H, Park DS, et al. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24: 98-105.

20. Lisanti MP, Scherer PE, Vidugiriene J, et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease. J Cell Biol 1994; 126: 111-26.

21. Behrendt D., Ganz P. Endothelial function: from vascular biology to clinical applications. Am J Cardiol 2002; 90: 40-8.

22. Hailstones D, Sleer LS, Parton RG, and Stanley KK. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 1998; 39: 369-79.

23. Fielding CJ, Bist A, and Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci USA 1997; 94: 3753-8.

24. Feron O, Dessy C, Desager JP, et al. Hydroxy-methylglutaryl-coenzyme a reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001; 103 (Absrtract).

25. Uittenbogaard A and Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation and rapid transport of cholesterol to caveolae. J Biol Chem 2000; 275: 25595-9.

26. Smart EJ, Ying YS, Donzell WC, et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 1996, 46: 29427-35.

27. Fielding CJ and Fielding PE. Intracellular cholesterol transport. J Lipid Res 1997; 38: 1503-21.

28. Fielding CJ and Fielding PE. Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta 2000; 1529: 210-22.

29. Babitt J, Trigatti B, Rigotti A, et al. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem 1997; 272: 13242-9.

30. Graf GA, Connell PM, van der Westhuyzen DR, and Smart EJ. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into cavoelae. J Biol Chem 1999; 274: 12043-8.

31. Frank PG, Marcel YL, Connelly MA, et al. Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class Btype I. Biochemistry 2002; 41: 11931-40.

32. Kim M-J, Dawes J, Jessup W. Transendothelial transport of modified low-density lipoproteins. Atherosclerosis 1994; 108: 5-17.

33. Pol A, Luetterforst R, Lindsay M, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001; 152: 1057-70.

34. Liu P, Ying Y, Zhao Y, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004; 279: 3787-92.

35. Engelman JA, Wycoff CC, Yasuhara S, et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 1997; 272: 16374-81.

36. Razani B, Schlegel A, and Lisanti MP. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci 2000; 113: 2103-9.

37. Engelman JA, Chu C, Lin A, Jo H, et al. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 1998; 428: 205-11.

38. Galbiati F, Engelman JA, Volonte D, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J Biol Chem 2001; 276: 21425-33.

39. Minetti C, Bado M, Broda P, et al. Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Am J Pathol 2002; 160: 265-70.

40. Cao G, Yang G, Timme TL, et al. Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis. Am J Pathol 2003; 162: 1241-8.

41. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science (Wash DC) 2001; 293: 2449-52.

42. Cohen AW, Park DS, Woodman SE, et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284: C457-74.

43. Woodman SE, Park DS, Cohen AW, et al. Caveolin-3 knock out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002; 277: 38988-97.

44. Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb VascBiol 2003; 23: 1161-8.

45. Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255-62.

46. Cohen AW, Combs TP, Scherer PE, and Lisanti MP. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 2003; 285: E1151-60.

47. Corely-Mastick C and Saltiel AR. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 1997; 272: 20706-14.

48. Gustavsson J, Parpal S, Karlsson M, et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13: 1961-71.

49. Parpal S, Karlsson M, Thorn H, and Stralfors P. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 2001; 276: 9670-8.

50. Razani B, Combs TP, Wang XB, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002; 277: 8635-47.

51. Bluher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002; 3: 25-38.


Рецензия

Для цитирования:


Воробьев Р.И., Шумахер Г.И., Хорева М.А., Осипова И.В., Кореновский Ю.В. Роль кавеол и кавеолинов в норме и патологии. Кардиоваскулярная терапия и профилактика. 2008;7(8):105-111.

For citation:


Voroblev R.I., Shumakher G.I., Khoreva M.A., Osipova I.V., Korenovsky Yu.V. Caveolae and caveolins role in health and disease. Cardiovascular Therapy and Prevention. 2008;7(8):105-111. (In Russ.)

Просмотров: 597


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1728-8800 (Print)
ISSN 2619-0125 (Online)